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Chapter 1

Introduction

This report is part of the small research project that was performed by the
author, as student member of the Theory Group at the Sterrewacht Leiden.
The project is one of two that are part of the master curriculum at Leiden
University. This project was supervised by Dr. G. Mellema.

Mellema, in collaboration with Eulderink and Icke, developed a numerical
solver for hydrodynamical behaviour of gas, governed by the Euler equations.
This Roe solver, based on the work of Roe [13], was previously tested on a
number of different test problems (see Eulderink&Mellema [4], Chapter 12 and
Paardekooper [11], Chapter 5), with excellent results. Only once before, by
Paardekooper, was the Roe solver used in combination with gravity, to study the
interaction between a planet and a gas disk during the era of planet formation.

The aim of this small research project was to apply the Roe solver to the
gravitational collapse of a spherical cloud of gas. By assuming initial spherical
symmetry without rotation, the collapse can be simulated in one spatial di-
mension, namely the radial distance r. This reduces the needed computational
power in such a way that the model can be easily run on a single PC.

1.1 Gravitational collapse

The application of the small research project was the gravitational collapse of
a cloud of gas in (empty) space. Gravitational collapse is the only known mech-
anism that is able to create large scale structure in the universe, such as stars,
galaxies or galaxy clusters. Gravitational collapse can occur when local fluctu-
ations in gas mags density appear. For gas clouds inside a galaxy, this can be
caused by shocks from supernova explosions. Areas with an overdensity, com-
pared to the average mass density, contract under self-gravity, making the mass
density contrast even larger. The contracting gas forms a cloud or breaks up
in multiple smaller gas clouds. Eventually, the contraction of the gas clouds
is slowed down due to the gas pressure (centrifugal forces and magnetic fields
may also play an important role). Depending on the mass and the size of the
contracted gas cloud, the contraction stops to form a cloud in hydrostatic (me-
chanic) equilibrium, or it continues into a gravitational collapse to form a very
dense point mass (a star or planet).

The problem of gravitational instabilities in gas clouds was studied as early
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as the start of the twentieth century by Jeans. He studied the effects of small
deviations from hydrostatic equilibrium and formulated his well known Jeans cri-
terion for gravitational stability. In the 1930’s, other people like Chandrasekhar
and Schwarzschild joined in, trying to find stationary solutions and approxi-
mations for the Euler equations of motion, which govern the dynamic motion
of gas. This work was mainly focused on the problem of star formation and
evolution.

1.2 Numerical modelling

As of the 1960’s, the introduction of the computer gave scientists a tool to do
extensive numerical research in the field of the dynamics of gravitational collapse
and proto-star formation. Around the same time that the theory on stellar
evolution advanced by the work of Hayashi and others, Larson [8] was one of
the first to build a numerical model for spherical gravitational collapse of a cloud
with a constant mass density distribution. In his article on proto-star formation,
he found that the mass density p of the outer part of the collapsing cloud
approaches an r~2 distribution (see Figure 1.1). Larson succeeded in finding

Figure 1.1: The variation with time of the density distribution in the collapsing
cloud (CGS units). The curves are labelled with the times in units of 10 s
since the beginning of the collapse. Note that the density distribution closely
approaches the form p oc 7~ 2. (From Larson [8], Figure 1.)

analytical, self-similar solutions to the isothermal Euler equations, in hope to
give a mathemathical description of the gas state during gravitational collapse.
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Shu [14], Hunter [7] and later Boily&Lynden-Bell [2] extended these solutions,
but in general, these solutions only partially match numerical simulations.
Numerical simulations of gravitational collapse were performed by several
authors, including Shu [14], Hunter [7] and Foster&Chevalier [6] (see Figure 1.2),
for isothermal spheres close to hydrostatic equilibrium. The results did not differ
much from the results of Larson, suggesting that the details of the initial setup
have a limited impact on the details of the collapse itself. In this sense, the total
mass of the cloud, expressed in Jeans masses, seems to be the major feature.
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Figure 1.2: Radial profiles of the velocity, density, and enclosed mass over ra-
dius for the standard case are presented, at several times prior to core forma-
tion. The profiles shown are for a run with 200 zones. The horizontal line in
plot a represents the Larson-Penston solution at core formation. (From Fos-
ter&Chevalier [6], Figure 1. For explanation on the units, see Section 3.2.2.)

From the 1980’s on, the collapse models were extended to (mainly) 2 and 3
spatial dimensions, including rotation. This seemed to complicate the results a
lot, because fragmentation of the collapsing cloud appears to be highly related
to the choice of the initial conditions. Despite the extended observational re-
search of star-forming regions, there is still great uncertainty about the detailed
conditions that precede proto-stellar formation.

1.3 Relevance

Although it seems that, in view of modern development of 3-dimensional hydro-
dynamic codes with adaptive mesh refinement, that 1-dimensional modelling is
a trip back into history, there is still some relevance to this project. One of the
most important motivations is the actual implementation of the Roe solver for
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gravitational collapse, as a test case. If successful, the implementation might
be extended into 3 dimensions, including rotation, chemistry, radiative transfer
and cooling functions. Another major motivation is the project as a learning
experience on hydrodynamics and numerical modelling. These subjects are only
poorly covered by the current master curriculum in Leiden. As for the physical
relevance, the expected high accuracy of the Roe solver might reveal detail in
the gravitational collapse that was not detectable before in any of the earlier
models. In any case, confirmation of the features that were observed in earlier
models would be a useful result on its own.

1.4 Overview

Chapter 2 contains the physics that was used to construct the model. This
includes a mathematical introduction to the Roe method and the numerical
methods contained within the Roe solver. In Chapter 3, the simulation results
of test problems and gravitational collapses are presented. Chapter 4 contains a
summary of the work done, conclusions and a recommendation for future work.



Chapter 2
Method

2.1 Gas physics

On macroscopic scale it is impossible to describe the state and motion of a gas
as a collection of individual particles, due to the very large number of particles.
Instead, the gas can be treated as a continuous matter distribution, described
by macroscopic parameters like mass density p, pressure P and temperature
T'. Statistical physics, thermodynamics and hydrodynamics are areas of physics
where the macroscopic behaviour of matter is studied. Some of the resulting
equations of these studies are presented in this chapter. From these equations a
model is built that, to some extent, mimics the behaviour of a real cloud of gas
in space.

In the model, the state of the gas can be expressed using a minimal set
of primitive variables. In this paper, the minimal set used consists of the gas
mass density p, the gas bulk velocity @ in three spatial dimensions, the pressure
P and the gravitational potential ®. All other macroscopic parameters can be
derived from this minimal set. Every macroscopic parameter may vary in space
and time, and are therefore functions of the spatial position ¥ and time ¢. In
this paper, these dependencies will not be mentioned explicitly (unless to clarify
things), so it is assumed that p = p(7,t), P = P(7,t), etc.

2.1.1 Gas equation of state

If a gas is assumed to obey the ideal gas law, there is a relation between pressure
P, mass density p and temperature T' at any point in the gas:

P =nkT = LpT (2.1)
wmmy
n is the number density of particles in the gas, k is Boltzmann’s constant and
pwmy is the average particle mass, expressed as the product of the relative
mass u and the mass mpy of the hydrogen atom. Furthermore, when shocks are
absent in a local part of space, entropy is assumed to be conserved, which can
be expressed in an adiabatic relation between P and p:

P =rp" (2.2)
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T = cp/ey is the adiabatic index, the quotient of the heat capacity cp per
particle at constant pressure and the heat capacity ¢y per particle at constant
volume. The constant & is a non-global constant and depends on the initial
values of p and P. ¢p and ¢y depend on @, the number of internal degrees of
freedom of the gas particles:

var:(§-l-n\nk' Cn:(§_l_n\kzcn-l-k:
\2 I A i \2 [ v
cy + k k
Cy v I'-1 ( )
From Equations (2.1) and (2.2) it follows that:
PrplT ~pb = T ~pht (2.4)

Thus, if [ — 1, T is independent of p (and P), making the gas isothermal.
According to (2.3), T' — 1 means that ¢y — oo and @ — 0. The number of
internal degrees of freedom @ goes to infinity. Each degree of freedom can store
a certain amount of energy. Thus, the gas’ capacity to store energy (or heat) is
unlimited, as is implied by ¢y — oo.
The internal energy density of the gas is given by:
nkT P

Eint — ﬂCVT = r—1 = m (25)

Here we used Equations (2.1) and (2.3). If T' — 1, the internal energy will
dominate over all other possible forms of energy. (Therefore, any energy equation
will become obsolete in this special case.)

2.1.2 Hydrodynamic equations of motion

Because the gas is treated as a continuous matter distribution, it will behave like
a compressable fluid, with a state equation given by (2.1). The mass density p
and pressure P are assumed to be low compared to a real fluid like water, so that
viscosity, shear forces and thermal conduction can be neglected. The resulting
equations of motion can be found in Shu [15], derived in a very clear and self-
consistent manner. These equations are referred to as the Euler equations.
The basic idea behind the Euler equations is conservation of mass, momen-
tum and energy. The first Euler equation of mass yields the mass continuity
equation, expressed in cartesian coordinates (¥ = (1, %2, x3), ¥ = (v1,v2,v3)):

0 0

= — =0 2.6

The summation convention is used for index j € {1,2,3}. From here on, summa-
tion convention is used for all pairs of equal indices. The second Euler equation
of momentum reads:

3] 3] 3]

& (pvi) + a—x] (pij + P(Sw) = —paxi ((I)) (27)

This is actually three equations, one for every spatial direction with index ¢ €
{1,2,3}. The gravitational potential ® might contain self-gravitation of the gas



CHAPTER 2. METHOD 10

and gravitational interaction with external mass. The Kronecker delta d;; is one
for i = j, else zero. The third Euler equation of energy reads:

0 0 0
5;@)+2%;(k4<Pbﬂ==—mv§5%@) (2.8)

The energy density e consists of kinetic energy density eg;, due to the bulk
motion of the gas and internal energy density e;n; (see (2.5)):

1
€= €rip + Cint = §pvjvj + (2.9)

r-1

2.1.3 Sound speed

The sound speed c¢; is the signal speed at which perturbations in the gas state
travel through a volume of gas at rest. The sound speed ¢, may vary in space
and time and is defined by:

2 _ dP
dp

When the change in pressure leads to an adiabatic expansion (or compression)
of the gas, (2.2) can be used:
d Iepl’” TP
cfz—(ﬂpr) =Trp' ! = kp _ 18 -
dp p p

/TP
o= (2.11)

Because p and P might vary from place to place, so does ¢,. It is therefore better
to refer to ¢; as the local sound speed.

With the bulk of gas at rest, a perturbation at a single point travels away in
all directions with the local sound speed. When considering a moving gas with
bulk velocity v = |&] > 0, the local sound speed is superimposed upon the bulk
velocity v. In the direction of ¥, the signal speed is given by v + ¢4, while in
the opposite direction the signal speed is v — ¢,. When comparing v to ¢4, three
cases are identified:

Cs

(2.10)

e Subsonic velocity, which means that v < ¢;.
e Sonic velocity, which means that v = ¢,.

e Supersonic velocity, which means that v > c¢;.

The Mach number M is defined as:
Mm=2 (2.12)

Cs

With subsonic velocity (M < 1), signals due to perturbations at a fixed point
in gpace travel away from this point, regardless of the direction in which the
signal travels. With sonic velocity (M = 1), signals in the opposite direction of
¥ are at rest relative to the source of perturbations. This tends to enhance the
perturbation. With supersonic velocity (M > 1), all signals travel in the direc-
tion ¥. The transition from subsonic to supersonic gas flow (or reverse) crosses
the sonic velocity, at which point enhanced perturbations create a discontinuous
transition in the gas state, also called a shock wave.
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2.1.4 Gravity

Every particle in a gas interacts with other particles through gravitation. New-
ton assumed that the force £, on a particle with position 7 and unit mass due
to a particle n with position 7, and mass m,, is given by:

(7 — )

The total gravitational force F on a unit mass particle due to N particles is just
a superposition of N forces due to (2.13):

N N G (7. _,)
— 7
= 2.14
Z n Z 77 —_ 3 ( )
n=1 n=1
When dealing with a continuous mass distribution p, the sum changes to an
integral over all of space:
ﬁ G -
Fe [CPOE-D jsp (2.15)
] e \5-19)
The particle position 7, is replaced by the mass distribution position §. The mass
my, is replaced by the mass element p(5)d®3, the product of the mass density p(§’)
and a volume element d®3. It is common to write the gravitational force F as

the negative gradient of the gravitational potential ® (e.g. see Binney& Tremaine
[1], Chapter 2):

FoSe = o= |22 p; (2.16)
5=

Taking the negative divergence of F leads to the Poisson equation of gravity:

—V-F=V.V®=V’®=4rGp (2.17)

Unlike other forces in nature, gravitation is a long range force. This means
that mass outside the boundaries of the gas must also be taken into account
when evaluating the integral in (2.16). Because @ is linear in p, it can be split
into two parts: the gravitational potential ®,, due to the mass density p,, of
the gas itself (self-gravitation) and the gravitational potential ®.,; due to all
magss density pep: outside the gas:

_ (59 (3) + peat(3)] 5. [ Gpsy (5) 3z Gpeat(5) 3 s
Q_/ EEr I +/ Te-A ¢
= @9 + Pent (2.18)

This idea works exactly the same for the gravitational force F:
F=-Vd=-V[dy+Popt] = -V, — VP,
=Foy+ Fou (2.19)

From electromagnetism it is known that the signal speed of electromagnetic
interactions is finite, namely the speed of light ¢. Relativity theory says this
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is the same for gravitational interactions. When the mass density p = p(§) is
constant in time, all formulas above are still valid. However, when p = p(§,t)
changes with time ¢, formulas (2.15) and (2.16) are replaced by:

[ Gp5t)(F—7) 5.

F—/ B d®s (2.20)

P = /Md%’ (2.21)
J |s=r

g7

The time t, =t — is called the retarded time. The time difference At =

t—t, = lg;ﬂ is the time it takes for the gravitational signal to travel from the
source (mass element) at position & to the observer at position 7. When At is
very small compared to the dynamical time scale ¢4, at which p(7,t) changes
significantly (At < tq4yn), At can be ignored and ¢, can be replaced by ¢ in

(2.20) and (2.21). This results in Equations (2.15) and (2.16).

2.2 Model description

The model starts with a simplified version of a contracted cloud of gas, at rest
with respect to the local centre of mass, surrounded by a lower mass density
environment. It is assumed that the size L of the cloud, including its local envi-
ronment, is small compared to the distance D to any external mass distribution,
so I « D. As a consequence, the cloud and its local environment are freefalling
in the external gravitational potential ®.,; and tidal forces can be ignored.
When a coordinate system is used that has its origin fixed at the local centre of
mass, the influence of ®.,; can be ignored altogether (so ®.,; = 0 and F’;wt = 6,
see Section 2.1.4).

Furthermore, it is a priori assumed that in this model the dynamical time
scale t4y, on which the mass density p changes significantly is much larger than
the maximum travel time At ~ L/c of gravitational interactions. The conditions
under which this is true are examined in Section 2.2.4. As a consequence, the
gravitational force and gravitational potential can be calculated from the current
mass density distribution with (2.15) and (2.16).

All the gas in the model is assumed to be (and to stay) neutral atomic
hydrogen, so p = 1 (see (2.1)). No magnetic fields are produced by the gas
and it is assumed that externally generated magnetic fields are too weak to
influence the gravitational collapse. As the focus of this research project is more
on the dynamical aspects of the collapse than the chemical, it is assumed that
no chemical reactions, ionisations or excitations take place. This makes the gas
perfectly transparent for radiation. All radiative energy that might be generated
in the process of gravitational collapse is assumed to be transmitted away from
the cloud without being absorbed (this is probably the biggest oversimplification
of the problem). The neutral atomic hydrogen is assumed to have no internal
degrees of freedom, so @ =0 and ' = 5/3 (see (2.3)).

2.2.1 Spherical symmetry

For simplicity, the initial contracted cloud of gas is assumed to have a spherically
symmetric mass density at rest relative to the origin at the centre of mass. The
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low mass density environment can be modeled as a constant mass density peny
that extends over all of space outside the contracted cloud. An example of such
a mass density distribution is shown in Figure 2.1. The density p can be thought
of as a superposition of & homogeneous mass density pen, {(dotted line) and an
mass density excess po = p — Peny due to the contracted cloud. Changing from

o o o
B [e)) (03]
I I I
| | |

mass density p

o
N
|
[

O‘O 1 | 1 | |
0 1 7 3 4 5 6
radial distance r

Figure 2.1: Example of a mass density distribution of a denser cloud embedded in
a less dense environment (dotted line). The axis-units for r and p are arbitrary.

cartesian coordinates 7 = (z,y, z) to spherical (polar) coordinates ¥ = (r, 8, ¢)
is an obvious choice, because the mass densities p and p.; are both spherically
symmetric around the origin and pey, is spherically symmetric around all points
in space.

Based on the same superposition principle used in Section 2.1.4, the self-
gravitational force ﬁsg of the mass density p can be split into a contribution
from peny and pg:

Fog = Feny + Fu (2.22)
From symmetry considerations, it is easy to see that ﬁem =0.Ina homogeneous
medium, the gravitational pull of any mass element at some position 7 on a unit
mass at the origin is cancelled by the gravitational pull of an equal mass element
at position —7. So the integral in (2.15) over all mass elements in space gives
zero. Because peny 18 spherically symmetric around all points in space, the origin
can be placed at any point in space without changing the result of the integral,
$0 Fopy = 0 for all 7. From (2.16) it, follows that ®,,, = constant. For simplicity,
we choose ®.,, = 0.

A common approach in spherically symmetric mass density distributions is
to divide it into spherical shells with radius r and infinitesimal thickness dr, all
centered around the common origin at » = 0. The mass (excess) dM(r) of a
shell at radius r is given by:

dM(r) = 4mr® py (r)dr (2.23)
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The mass excess M (r) enclosed within a radius r is given by:

M(r) = /OT dM(s) = 4x /07“ 52pei(s)ds (2.24)

The total mass excess M is given by:

[e.e]

M = M(x) =47 /f) s2pei(s)ds (2.25)

Calculating F is simplified by using the spherically symmetric version of
(2.15) (e.g. see Binney&Tremaine [1], (2-23a&D)):

B, = —Gﬂi—y)r (2.26)
From (2.26) it can be seen that Fl; only acts in the radial direction. Any ac-
celeration of matter due to self-gravity is also directed radially and thus the
spherical symmetry of the mass density distribution is conserved. Conservation
of angular momentum makes sure that the initially non-rotating cloud will not
start rotating due to self-gravity. With the additional assumption that the ini-
tial gas pressure is also spherically symmetric, the whole model becomes and
stays spherically symmetric.

Because none of the macroscopic gas parameters depend on 8 or ¢ (or vy
or ve) any more, these coordinates become obsolete and can be left out. The
number of spatial dimensions in the model is then reduced from three to one.
All spatial vectors can be reduced to scalars, like the gravitational force:

GM(r
F = Fept + Fsg =Fepy +Foy = — 7_2( ) (227)
From (2.16) it follows that (see Binney&Tremaine [1], (2-22)):

1 T o0
F=—-—— = &=—-41¢ [—/ SQpcl(s)ds—l—/ spcl(s)ds} (2.28)
or r Jo ,
The Poisson equation of gravity (Eq.(2.17)) becomes:
10 (.00
2or \" or

In Appendix A the Euler equations are derived in case of spherical symmetry.
The mass continuity equation is given by:

) =4nGpy (2.29)

9 o 9 2\ _

g (r’p) + o (r’pv.) =0 (2.30)
The equation of momentum is:

8, , 8 ur _ L, [2P 0%

e (r’pv,) + o (r* [pv.> + P]) =7 PG (2.31)
And the equation of energy is:

0 0 0%

5 (r’e) + ar (r’le + Plv,) = —r2pv,,,5 (2.32)

Here, € is the total energy density, similar to (2.9):

1. P
€ = €hin + €int = §pvﬂ + 51 (2.33)
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2.2.2 Homogeneous sphere

The concept of spherical shells can be used to construct any spherically sym-
metric mass density distribution. Constructing means adding shells on top of
each other, starting with a shell at r = 0. Any new shell is moved in from
r = oo to r = r, therefore losing potential energy in the gravitational potential
of the already present mass excess M(r). The gravitational potential energy
dE,0¢(r) lost to put one mass shell on top of underlying shells is given by (e.g.
see Caroll&Ostlie [3], Section 10.3):
GM(r)

dE, (ry = ——"—""2dM(r) =
“ GAEAT)

) = adr (2.34)
=pot\t ) r T el \=e )

Constructing a complete spherically symmetric mass density distribution leads
to the total gravitational potential energy Ep:

Epot = /000 dEpet(s) = —4ArG /OOC sM(s)pa(s)ds (2.35)

A simple model of a cloud of gas with a spherically symmetric mass density
is a homogeneous sphere, or ‘top-hat’, with radius R:

_ Penv + Po r S R
p(r) = { Do rS R (2.36)

Both pp and pep, are constants. From (2.24) and (2.36) it follows that:

é7Tpor3 r<R
M(r) = {%WOR:», "SR (2.37)

The total mass excess M follows from (2.25):

3M

4
M=M = — 3 = 2.
(R) 37rp0R S po iy (2.38)
And the total gravitational potential energy E,.; is given by:
R 16 R
Epor = —47TG/ sM(s)pods = —EWQG/JO2 / stds
0 0
3GM?>
=-z 2.39
5 R (2.39)

Here, (2.38) was used.

For a gas cloud that is gravitationally bound and stable (not collapsing
nor expanding), the virial theorem applies (e.g. see see Caroll&Ostlie [3], Sec-
tion 2.4):

2E;p; = _Epot (240)

E;y; is the total internal energy of the cloud. Basically, (2.40) decribes the me-
chanical balance (hydrostatic equilibrium) between self-gravity (~ Epq) and
pressure (~ Fj,:). When the cloud collapses, self-gravity dominates over pres-
sure, so that:

2Eint < _Epot (241)
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When the cloud is isothermal, Ejy,; is similar to (2.5):

E NET N M 2.42
znt—r_lv _HmH ( )

N is the total number of particles in the cloud.

Suppose that the ‘top-hat’-cloud has the same temperature T' everywhere
and is stable and gravitationally bound, so the cloud neither expands nor col-
lapses. Combining (2.39), (2.38), (2.40) and (2.42) gives:

3
.3 10kT 2
M=M;=, /4@0 ((r — 1)3G,UmH> (2.43)

M is called the Jeans mass. When a ‘top-hat’-cloud with constant mass density
excess pp and constant temperature T has a total mass excess M that exceeds
My, (2.41) is true and the cloud collapses. So M is the critical mass above which
the ‘top-hat’-cloud collapses. Even for non-top-hat clouds, the Jeans mass My
can be used as an critical mass indicator, using average values of the macroscopic
gas parameters in the calculation of M;. Using (2.1), the Jeans mass can also
be expressed in terms of constant mass density excess pg and constant pressure

P:
3
kT P 3 10P 2
I Vo 2.4
pmE  po ’ 4mpo ((F— 1)3GP0> (249

The Jeans radius Ry is the maximum radius of a ‘top-hat’-cloud with con-
stant mass density excess pp and constant temperature 7' (or constant pressure
P) for which the mass excess M equals the Jeans mass M:

4
MngﬂRgpo =

10kT 10P
= = 2.4
Ry \/(I‘ — DdrGpopmpy \/(F — 147G po? (245)

2.2.3 Hydrostatic equilibrium

The homogeneous sphere of Section 2.2.2 does not seem to be a very likely mass
density distribution for a real cloud of gas in space. A mass density distribution
which is probably much closer to reality is a spherical distribution in hydrostatic
equilibrium. In this situation, the self-gravitational force of the gas that is di-
rected inwards is balanced by the pressure gradient of the gas that is directed
outwards. As a result, the (radial) velocity v, of the gas is zero in space and
time and all other macroscopic gas parameters are constant in time (and thus
functions of r only). The equation of hydrostatic equilibrium can be retrieved
from Eq. (2.31) (with v, = 0):

0

9 (r2p) =2 {

2P 6@} OP o
= —— = =
or

T ar = P A (2.46)

Here, (2.28) was used. Hydrostatic equilibrium states are a subgroup of the
stationary solutions, derived in Section B.2 (with D = 0).
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2.2.4 Free-fall

A cloud with a mass that is larger the Jeans mass cannot maintain hydrostatic
equilibrium and will collapse. During the first part of the collapse, the gravita-
tional force dominates over the pressure gradient (compare (2.46)):

AD
(0¥

or

The mass of the cloud enters a free-fall motion towards the origin at + = 0. This
results in a fairly simple equation of motion for a unit mass at radius r:

o*r o GM(r)

o2 T r2
Suppose now that (2.47) is true for the whole collapse. This is not such a bad
assumption, because in most cases the pressure gradient will become significant
again only at small r. Then (2.48) can be integrated to find r as a function of ¢.
This is done in Carroll&Ostlie [3], Section 12.2, for a top-hat-cloud with mass
density po and radius R (similar to the top-hat-cloud in Section 2.2.2) that is
initially at rest. From this result, it can be calculated how long it takes for the
mass at r = R to reach r = 0. This is called the free-fall time ¢y; and is given

by:
[ 3
tyr = 352G, (2.49)

Even for non-top-hat clouds, the free-fall time ¢, can be used as an indicator
for the time of collapse, using average values of the macroscopic gas parameters
in the calculation of ;.

The free-fall time t;¢ can be used as an order estimate for the dynamical
time scale ¢4y, on which the mass density p changes significantly. Furthermore,
the Jeans radius Ry can be used as an order estimate for the size L of the
cloud including its local environment. Examining the conditions under which
At € tgyy leads to:

L Ry 1 P
At~ =~ — ~ =y ,
c c c\ Gpo?’

L
Gpo

P
Al K tgyn = ,/p— <e (2.50)
0

According to (2.11), ¢; ~ /P/po, so that (2.50) is similar to ¢; < ¢. Thus,
for At < t4yn to be true, the sound speed ¢, within the gas cloud should be
much smaller than the speed of light ¢. This is in general true for classical,
non-relativistic mechanics (because then P < pc?, see Appendix A).

< pF (2.47)

(2.48)

tayn ~ tyg ~

2.3 Roe method

To determine the dynamic behaviour of the collapsing cloud of gas, it is necessary
to solve the three partial differential equations (Eqs. (2.30)-(2.32)) that make
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up the Euler equations. As these three equations all have the same layout, the
following vector notation can be introduced:

[ r\ [ pur N\ /[ 0
W:r2(pvr), F:r2(pv,«2+P), S:r2(¥—p%—f) (2.51)
\ e/ \le + Plvr/ \ —puny J

The Euler equations become:
AXAT AR
U vy UL

o T =S (2.52)

The state vector W represents the state of the gas (density, momentum and
energy) within a infinitely thin spherical shell at radius r. The flux vector F
represents the flux (of density, momentum and energy) through the surface of
the shell that might change the gas state. The source vector S represents sources
(of density, momentum and energy) within the shell that might change the gas
state.

With the exception of a very few cases, it is not possible to find analyti-
cal solutions for (2.52). However, it is possible to find approximate solutions
for local parts of space over a limited time interval. Roe [13] developed an
approximate Riemann-solver (see Section 2.3.3) for Cartesian grids, which per-
forms excellent compared to other methods. Eulderink&Mellema [4] developed
a generalised version of the Roe method, applicable for both relativistic and
non-relativistic cases through the use of general coordinates. In this method,
the (self-)gravitional potential enters the (Euler) equations of motion through
the metric of space-time, opposed to adding the gravitational force manually
as a source term. The method used in this report is copied from the applica-
tion of the Roe method on planetary nebulae in Mellema et al. [9] with some
small adjustments. In this section, some of the basic theory of this method are
discussed. Section 2.4 continues on the numerical details.

Solving Equation (2.52) numerically is difficult to perform at once. It is
more convenient to split up this equation into parts which can be solved or
approximated. Therefore, a technique called operator splitting is used. With
this technique, Equation (2.53) is split into three separate vector equations:

OW  OF
W + E =0 (2.53)
OW
o -8 (2.54)
OF
o = S (2.55)

It can be shown (see Eulderink&Mellema, Appendix C) that numerically solv-
ing these equations after each other yields a second order accurate solution.
Integrating (2.55) is equal to finding stationary solutions, see Section B.2.

2.3.1 Hyperbolic equations

Equations of the form (2.53) are called hyperbolic equations. Two properties of a
hyperbolic equation are that signals of state changes travels at a finite velocities
and that discontinuities (or jumps) in the state variables are allowed. In this
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case, the signal velocity represents the sound speed in (2.11), superimposed
upon the velocity of the gas. A discontinuity represents a shock in the gas, a
transistion between a subsonic gas flow and a supersonic gas flow.

At a fixed position r and time ¢, the flux F can be expressed as a function

oW OF _OW OF OW _0W oW -
o Tor ot Tow or ot " %ar T (2.56)

The Jacobian A = OF /W is also a function of W. For very small variations in

an approximately linear change in F:
AF ~ AAW = F+AF & F 4+ AAW (2.57)

The Jacobian A can be represented by a matrix, with elements A,, =
OF,/0W, (a,b € {1,2,3}). Because the determinant of this matrix is non-zero,
the eigenvectors e, (¢ € {1,2,3}) belonging to the eigenvalues A, are a com-
plete set. This means that AF and AW can be expressed in terms of these
eigenvectors:

3
AW = Z ac€c

c=1

3 3 3
AF = Zbcec ~ AAW = AZacec = Z)\cacec =
c=1 c=1 c=1

be & Acae (2.58)
The eigenvalues and eigenvectors of the Jacobian are derived in Section B.1:
Al = Uy, Ao = v, + g, A3 =0, —Cg (2.59)
1 1 1
e1r=| A |, e= A , 3= Az (2.60)
%’Urz # + VrCs % — VUrCs

The sound speed ¢; is given by (2.11).
The following matrix notation is introduced:

T

| a1 by
E = €] €y €3 y a = ag y b = bg (261)
Lo as bs

The coefficients a. and b, are now given by:

AW=Fa = a=E'TAW =

I'-1 P
a = o2 <|:6_; — Ur2:| AWy + v, AW — AW?,)
r-1/1 , 1
az = o (5 AW, — v, AW + AW3 | + o (v, AW — AWs)

(UT AWl — AWQ)
(2.62)

r—-1/1 .
Qs = —— (—vﬂAWl — UTAWQ + AWg) —

2652 2 265
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AF=Fb = b=E'!'AF =

r-1 P
b1 = o2 <|:6_; — Ur2:| AFl +'U7»AF2 - AF?))

r—1/(1 !
by = o <§UTQAF1 — v, AF, + AFs) + 5. (v, AF, — AFy)
b= L (L eAr AR £ AR ) — - (AR - AR 2.63
3_@&5%4 1 — Uy 2+ 3)—208(’07« 1= 2) (2.63)

(Note that in Mellema et al. [9], formula (A.5) contains a factor v — 1 too much.
This should read:

A~/ 1 1
6

by = - () = 55 (A = ViA)

(...)+LS(A2_V,A1)

ba

2
1 1
252 2

Feeding a small state perturbation AW into (2.56) gives:

0AW n OAF 0
ot or
— Zacec + — Z AcGee. | 0 =
8t (cl 87“ c=1
da. da.
;t + )\ca—i ~0 (2.64)

These are three wave equations with solutions a.(r,t) = a.(r — A:t). From this it
follows that small changes in the state propagate through local space at limited
signal velocities, equal to the eigenvalues of the Jacobian. The paths that are
traveled by these waves through space-time are named characteristics. Like light
cones in relativity theory, the characteristics mark a region of influence in space-
time.

2.3.2 CFL-condition

The idea of state changes traveling through space at limited velocities is in
general true, also for large state changes and a non-zero source vectors. When
considering a short travel time At, a state change will only influence the gas
within a small distance Ar from its starting point, because of the limited signal
velocities. When assuming that the signal velocities are roughly constant during
this short time interval, the maximum distance that a signal can travel is given
by:

Arpmas = Amaz At (265)

Here, Apqs 1s the maximum of the absolute values of the eigenvalues A..
When attempting to solve a hyperbolic equation locally, this limited range
of influence can be used to put a constraint on the maximum time step over
which the hyperbolic equation can be integrated. For a given small distance Ar,
the maximum time step must satisfy:
At Ar

‘maxr ~> by

(2.66)

mar
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This so-called CFL-condition is named after its inventors, Courant, Friedrichs
and Lewy. To choose a suitable At, the following equation can be used:

Ar

A’I'TL(IE

At =

(2.67)

A value of ¢ = 1/4/2 is often used. To be on the safe side, ¢ = % is used in this
report.

2.3.3 Riemann problem

The Riemann problem is one of the configurations for which there exists an an-
alytical solution. The one-dimensional setup consists of two stationary flows on
both sides of an interface, on which there exists a state discontinuity. Both flows
extend to infinity. The Roe method is based on numerically approximating the
Riemann problem, locally around the discontinuity, to second order accuracy.
Because of the CFL-condition, only a limited distance around every interface
needs to be taken into account, when using a small enough time interval. The
Roe method (based on the earlier work by Godunov (1959)) divides an arbi-
trary hydrodynamical configuration into many local stationary flows, separated
by state discontinuities. Only when the number of divisions could reach infinity,
would the Roe method yield perfect accuracy. In practice this is not true, but
still the performance of the Roe method on an approximated hydrodynamical
configuration is remarkable.

Figure 2.2: Schematic overview of the Riemann problem.

Figure 2.2 shows a schematic overview of the Riemann problem. Left and
right, of the interface (dashed line), two different stationary flows are present,
depicted as curved lines. At some point in space on each side of the interface,
the state is known (W7 and Ws). By means of stationary extrapolation (de-
termining the stationary flow, see Section B.2), the states immediately left and
right, of the interface (W, and Wg) can be determined, from which the fluxes
immediately left and right of the interface (F;, and Fg) can be determined.

To calculate how this configuration develops in time, the true flux F through
the interface needs to be approximated to first order, which yields second order
accurate states. Roe found a form which gives an exact solution if the Rankine-
Hugoniot jump conditions are valid over the discontinuity (e.g. see Shu [15],
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Chapter 15):
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Here, A, and e, are the eigenvalues and eigenvectors of the Jacobian at the
interface. a. are the projection coeflicients of the state difference AW = Wg —
Wy . o, indicates the sign of A.:
41 A >0

¢ = {_1 A <0 (2.69)
The equations for A, (Eq. (2.59)), e. (Eq. (2.60)) and a. (Eq. (2.62)) cannot be
used in their current form, because the state at the interface is undefined due to
the discontinuity. Roe suggests using a weighted average of state variables left
and right of the interface (indicated by sub-indices ;, and g). For the spherically
symmetric case, the weight factors K are defined by K2 = Wy = r2p. The

averages of the velocity v, and the enthalpy H = # are given by:
o = Krv 1 + Kror g
" " Kr+ Kg
o i = Kot + Krlg (2.70)
- H=—— .
Kip+Kp
The averaged sound speed ¢, is defined by:
~ 1.
= (-1 - 557 (2.71)

In practice, the a. coefficients are not calculated directly from (2.62), but are
approximated from the b. coefficients, using (2.58). The b, coefficients, which
are calculated using (2.63), are not discontinuous on the interface, while the a.
coeflicients are. In the approximation for a., special care must be taken for the
case that A, = 0. The projection coefficients a. can be calculated from b, using;:

n A t+e

Qe (2.72)
The very small number € prevents a division by zero.
Equation (2.68) becomes more transparant when realising that:

3
1
F = 5 <FL + FR) + Z(_Uc)/\cacec>

c=1

3
> Xeace,=AF =Fp - Fp, (2.73)

c=1

The true interface flux is generated out of projections of either Fy or Fg onto
the eigenvectors e., where o, acts as the switch. When A, > 0 (o, = +1), the
signal wave travels in positive direction (to the right), so the flow is coming in
from the left. In this case, Fy, is projected onto e.. When A. < 0 (o, = —1),
the signal wave travels in negative direction (to the left), so the flow is coming
in from the right. In this case, Fg is projected onto e..
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2.3.4 Flux limiter

When using a limited number of stationary flows and interfaces to model a
real hydrodynamical system, an approximate Riemann solver tends to induce
and preserve state discontinuities at the interfaces, even when in reality the
state changes gradually. It that case, a linear interpolation would be a better
mechanism to use. For that reason, Roe proposed an additional flux limiter for
his approximate Riemann solver, by replacing (2.68) with:

( — \

T 1 T N T rs ! AN} AR Y £y M AN

r —5 \rL—rrR— Z (JC—\O'C—VC)LUC)/\CG,CEC} (£.(4)
c=1

For 1. = 0, this equation reduces to Eq. (2.68). For . = 1, the equation yields:

3
1
F=3 <FL +Fr+ ) l/c/\cacec> (2.75)

c=1
Compared to (2.68), —o, is replaced by v., which is defined by:

Ac

~ Ar/At (276)

Ve

The CFL-condition makes sure that |A:| < Ar/At, so v, can take on any value
between —1 and +1, depending on the relative strength of A, compared to
Ar/At.

Through the parameter 1., the flux limiter compares the state difference at
an interface to the state difference at the neighbouring interface upwind (from
where the flow is coming), using their projection coefficients a.. If a.(0) is the
projection coefficient on the central interface, a.(—1) the one on the left interface
and a.(+1) the one on the right interface, the ratio x. can be defined as:

ac(—o¢)
a.(0)

The dependence of ¥. on x. determines the character of the flux limiter. A
general form is given by:

Xe = (277)

0 Xe <0
wc(Xc) = min(l,plr) 0<x. <1 (2'78)
min(ps,r) Xe > 1

The function min() determines the minimum value of its arguments. Based on
numerical experience, Roe suggests using ‘Superbee’, which means that p; =
p2 = 2 (see Figure 2.3). This means that t, can vary between 0 and 2. In this
report, the values p; = p2 = 1.5 of Paardekooper [11] are used, which tends to
surpress very steep gradients a little more to prevent overshoots.

2.4 Numerical method

In this section, the numerical techniques and procedures are discussed that
were used to perform the simulations for this report. All relevant parameters
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that describe the macroscopic conditions of the spherical gas cloud are functions
of the radius r and the time ¢. To numerically solve the spatial and temporal
behaviour of the gas cloud, it is necessary to quantise both r and %.

The basic layout of each simulation is similar:

1. A limited number of spatial grid points are chosen to represent space.

2. At simulation time ¢ = 0, for each grid point a primitive set of gas param-
eters p, P and v, is chosen which represent the initial gas state.

3. The following steps are repeated until the final conditions of the simulation
are reached.

(a) The gravitational force is calculated from the mass density distribu-
tion on the grid.

(b) At the grid points on the edge of the grid the boundary conditions
are set.

(¢) The simulation time step At is determined.

(d) The Euler equations are integrated over space and time to determine
the change of state.

(e) The gas state is updated.

(f) The simulation time ¢ is increased with At.

2.4.1 Grid model

The central part of the simulation is a fixed grid of N cells, covering a limited
part of the domain of r. Each cell is identified by a lower index ¢, which runs
from 1 to N. Figure 2.4 shows how the cells are positioned in real space. The
cells are thin, spherical shells around a common origin. The N cells cover a
radial distance from 7,5 t0 Tmaez, With i < Tmaez. A more mathematical
approach is shown in Figure 2.5, where the same spherical cells are depicted as
rectangular blocks on a straight line.

The simplest way to define the spatial layout of the grid is to divide the
range from r,,;, t0 Tymee into N cells with equal width Ar:

Tmaz — Tmin
= 2.
Ar N (2.79)

Figure 2.3: Transfer function of Superbee flux limiter.
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Figure 2.4: Spatial overview of N spherical cells around a common origin.

r .
min

i=1]

i=2

i=N-1

Figure 2.5: Schematic overview of the same N cells along a straight line.
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The subscripted radius r; is defined as the radius in the centre of cell i:

1
Ti = Trin + (8 — §)A7‘ (2.80)

From this it follows that r;_1 is the inner boundary and r; 1 the outer boundary
of cell 7 (thus TL = Tmin and TNpL = Trmaz)-

Tt is assumed that the cells are so small (or thin) that the mass density p;,
pressure P; and velocity v, ; change only little within each cell. It is common to

look at p;, pressure P;, v, ; as the average state over the whole of cell i:

1 [Ti+3
pi%(phzﬂ/ © pdr
ri_%
1 /"l“l_'_l
P~ (P); = E.,/yl_l Pdr
1 [Ti+d
Vi R (V)i = E/ * odr (2.81)

rl._%

The grid represents the state of the gas at one single instant of time £.
To update the state one time step At later, the Euler equations need to be
numerically integrated. The only requirement on At is that it satisfies the CFL-
condition (see Section 2.3.2) for all cells(!). In general, At is not a constant time
step. A superscripted ¢" indicates the time after n state updates. The mass
density in cell ¢ after state update n is noted as p?, etc.

2.4.2 Initial configurations

Every simulation starts with setting an initial configuration of the grid, which
represents the gas state at simulation time ¢t = t® = 0. It is the initial gas state
that gets developed in time by the numerical model, by integration of the Euler
equations. By choosing an initial configuration, the scope of the simulation is
determined. Although the cell contents should be averages over the whole cell,
the initial values are chosen to be the gas states in the centre of the cells at
r = r;, which is a reasonable approximation. In this report, three types of initial
configurations are used.

The top-hat cloud is the most simple initial configuration. It simulates a
high mass density cloud in a low mass density environment. Both the cloud and
the environment are in pressure equilibrium and in rest relative to the origin
at r = 0. Because of its simplicity, many authors have used this configuration
in their gravitational collapse models, although it is very artificial. The top-hat
cloud is expected to collapse during simulation, or at least move from its initial
configuration, because it is far from hydrostatic equilibrium. The grid is split
into two parts, depending on the radius of the cloud and the additional radius of
the environment. On the inner part, the cloud cells are all set to the high mass
density pp, together with the global pressure P and velocity v, = 0. The radius
is usually set to (a multiple of) the Jeans radius, or is determined by choosing a
total mass of the cloud. On the outer part, the cloud cells are all set to the low
mass density p;, together with the same global P and v, = 0. The three main
reasons for the presence of an environment is to define an outer boundary for
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the cloud, to specify its mass density, to provide the cloud with some space to
possibly expand into and to define an environment into which pressure waves
can travel radially outward (after which they leave the grid).

Hydrostatic equilibrium is an initial configuration which is a bit more com-
plicated to set up. With a cloud in hydrostatic equilibrium at all points in the
cloud, the gravitational force inwards is counteracted by the (negative) pressure
gradient outwards. The hydrostatic equilibrium is expected to remain station-
ary during simulation. Many authors use hydrostatic equilibrium as an initial
configuration, after which they perturb the system by increasing the cloud mass
density and pressure or the external pressure by some factor (often ~ 10%).
This will make the cloud move, possibly collapse. Hydrostatic equilibrium is set
up by choosing a central mass density p. and pressure P, for the innermost cell
of the grid, while central velocity v, . = 0. Using these values with the method
described in Section 2.4.7 yields a hydrostatic equilibrium. This way, it is not
possible to specify a fixed cloud mass beforehand. This can only be done by trial
and error.

The stationary flow is an initial configuration which is also a bit complicated
to set up, although very similar to the hydrostatic equilibrium. A stationary flow
is expected to remain stationary during simulation. The stationary flow is set up
by choosing a central mass density p., pressure P, and central velocity v, . # 0
for the innermost, cell of the grid. Using these values with the method described
in Section 2.4.7 yields a stationary flow. Again, it is not possible to specify a
total mass beforehand. This can only be done by trial and error.

2.4.3 Boundary conditions

Because the grid is limited in spatial dimensions, it is necessary to specify the
behaviour of the grid at the boundaries 7,,in and 7mq,- It is common practice
to add one or more so-called ghost cells at each boundary, which provide some
desired boundary behaviour during simulation. For this report, one ghost cell is
added at both 7,4, and 744, indexed with ¢ = 0 and ¢ = N + 1. Two types of
boundary conditions are used.

The outer boundary should allow for mass and waves to leave the grid
without reflection, while inflow of matter should also be allowed. This type
of boundary condition is called an inflow/outflow boundary condition. Accord-
ing to Paardekooper [11], Section 4.4, this is done by simply rewriting the initial
boundary state into the ghost cell at every time step of the simulation.

For simulations with r,,;, = 0, it is prohibited for matter to flow through the
boundary at i = %, because at r = 0 the surface area (~ r?) of the boundary is
zero. Any matter trying to pass should reflect back onto the grid, so a reflecting
boundary condition is needed. This can be done by making cell 0 a mirror
copy of cell 1. All scalar state parameters, like mass density and pressure (and
gravitational potential), are copied directly. All vector state parameters, like
velocity and gravitational force, are copied with a minus sign. Special care must
be taken in the Roe solver to handle r = 0 correctly. The net flux through the
boundary at ¢ = % must always be zero (this can be hard-coded in the Roe
solver).

For simulations with r,,;, > 0, an inflow boundary condition can be used
on the boundary at ¢ = 4. This could mimic a central object (e.g. a star) which
injects mass onto the grid (e.g. a stellar wind). As above, this is done by simply
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rewriting the initial boundary state into the ghost cell at every time step of the
simulation. However, it should be noted that any waves that run backwards to-
wards the centre do not get reflected, which is unphysical behaviour. Therefore,
it is best to make the outflow supersonic, so that all signal (wave) velocities are
greater than zero. Whether this is realistic is not, discussed in this report, as
the supersonic wind is only used as a test case for model functionality, not for
simulating true stellar winds.

2.4.4 Integration of the Euler equations

When the grid is defined and initialised, the boundary conditions are set and
the time step is determined, it is time for the Euler equations to be integrated.
For this, the Roe method in Section 2.3 is used. The cell boundaries are the
interfaces, while inside each cell, a stationary flow is assumed. The use of the
grid fixes the location of all (cell) interfaces in space. As a consequence, a shock
(state discontinuity) can only appear at a cell boundary.

Using the Roe method means numerical integration of Equations (2.53)-
(2.55). Before giving the steps how to do this, a final bit of theory is needed.

Gauss theorem

Using the Gauss theorem on (2.53), it follows that over any space-time interval
Ar, At the following must be true:

}fA . (Wdr+ Fdy) =0 (2.82)
r,At

Applying this to one grid cell during one time step, following the direction of

t71+1

v
A\ 4

A

I »

]

Tin Tivns

Figure 2.6: Schematic overview of one grid cell during one state update in space-
time.

integration in Figure 2.6, gives:

Tivd 1 Ttk
W (r, " Hydr — W(r, t")dr
ri_% T’i_%

gt gt

+ F(T‘i_%,t)dt— [ F(Ti+%,t)dt

tn n

0 (2.83)
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The state in cell ¢ at time n is an approximate average over space, just like
(2.81):
1 [Ti+g

~ I\ L=
~ \" /Z —_
Ar jri_

-
2!
3
o
3
.
[N
[0.2]
g
>

=

In the same manner, the flux at cell boundary 7 + % at time n + % can be seen
as an approximate average over time:

ot L1
Fz‘+ I~ (Fi+%>”+2 = A_t . FZ+%dt (285)

NI o

Using (2.84) and (2.85), (2.83) can be approximated by:

Ar (WP - W)+ At (B —F ) ~0 =

z+§
At 1 1
nt+l n__ =Y "+2_ nt3
Wit A W - (F S ) (2.86)
This equation basically says that the new state is equal to the old state plus the
amount that is transported in or out by the net flux through the boundaries.
This is the signature of a conservative numerical scheme.

Roe solver

The Roe solver is the central part of the hydrodynamical model. It calculates

;rf and Fn+2
based on the Roe method in Section 2.3, so that a state update can be calculated
from the former state W7 by using (2.86).

Following the Roe method, the first step is to integrate (2.55) from the cell

centre at r; to the cell boundaries at r;_; and r;, 1 using stationary extrapola-
tion (finding the stationary solution). Thls yields the states (W7 e (WRg[! L1
left and right of each boundary i —|— (excluding the outer boundaries of the
ghost cells). From these the fluxes [F L] e [FR]7, ; are determined.

2

approximations for the time-averaged cell boundary fluxes F

The second step is to determine for each boundary the weighted averages of

the velocity v, 1 and the enthalpy H " . Then the eigenvalues [/\c];ﬂrl, eigen-
2
vectors [e.]!" , and projection coefﬁments [ac]} , and [b]? , can be calculated.
2 2 2

The third step is using (2.75) to determine the approximate boundary flux
n+2 for each boundary. After following these steps, the state W7 is updated
to a new state [W1]7"! using (2.86).

Source term integration

Until now, the integration of the source term in (2.54) did not receive any
attention, but it cannot be left out. The updated state [W;]7*! from the section
above needs to be corrected for this. The following correction is accurate to
second order (see Eulderink&Mellema, Appendix C):

[Wo]?H = [W 7T + At 87 (2.87)

At
W = [Wa[iH + == (87 + [So]f ) (2.88)
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First, the source term S needs to be determined from the former state W7,
Logically, this needs to be done before the state gets updated in the Roe solver.
Next, an approximation [W»]?™" of the new state is calculated by integrating
S; to first order (2.87). The source term [S2]7 !, calculated from [Wo]?*! ap-
proximates the new source term. The final step is to average the source terms
S; and [SQ]?+1 and integrate the average to yield a second order accurate state
update W1 (2.88).

Alternative stationary extrapolation

Because stationary extrapolation is computationally expensive, a less expensive
method was implemented in the Roe solver. Instead of finding a stationary
solution, (2.53) is integrated directly to first order to find the interface fluxes:

[FL]H% =F + 5 Si
A
n n =i n
[FR}F% =F7 - 9 S; (2.89)

These first order accurate fluxes will still yield a second order accurate state.

However, by direct integration of 2.53), the interface states W, W g are no
longer available. Instead, the central states W} are used for calculation of the
weighted averages of the velocity and the enthalpy. This approximation amounts
to the assumption that the cell contains a stationary flow.

2.4.5 Radial coordinate transformation

During a gravitational collapse, the inner part of the grid will be the most in-
teresting part to examine. Assuming that r,,;, = 0 is a valid option, the gas
parameters are expected to change the most when approaching r = 0. It is there-
fore useful to have narrower cells on the inner part of the grid, while the outer
part might do with larger, but fewer cells. This can be done by transforming
the radial coordinate r into a new ‘distance’ coordinate £:

roL=4r) & {—or=r{) (2.90)

The inverse transformation from £ to  must also exist, for this defines a unique
relation between r and £. Thus, £(r) should be a continuous, differentiable,
and strictly monotonic function on the domain of r. The function £(r) can be
chosen freely, as long as it meets these requirements. For practical purposes, it
is easiest to choose a function £(r) which increases when r increases, so that
Lonine = L(Pmin) < lmaz = £(rmaz)- Note that, although r(€) can be expressed in
meters or some related distance units, £ can not (in general). The cell width is
now given by:

emax - zmln
Al = — N (2.91)
The distance ¢; is defined as the the value of ¢ in the middle of cell i:

bi = bopin + (Z — %)Aé = 1= 7‘(&) (292)
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The radius r; is no longer defined by (2.80), unless £(r) = r. The width Ar of
any cell ¢ is no longer a constant (unless £(r) = r), but is given by:

Ary=ri 1 —rig (2.93)

i—3

From differential calculus it follows that:

dr = dr(f) = d”(;) de=r'(0dt = (2.94)
a 1 9
ar _ r(0) ot (2.95)
87'(5) ’ u:f ’
vr= g =T (E)E =r'()v, (2.96)

Here, r'(£) is short notation for the first derivative of (£) to £. Short notation
for the second derivative is 7 (£), etc. Again, note that, although v,(£) can be
expressed in meters per second or some related velocity units, v, can not (in
general). From (2.95), an approximation can be made for Ar;:

Ar; =7 (GYAL =TI AL (2.97)

Using the transformation rules above, all equations containing r can be rewritten
in terms of /.

Because of the generalised Roe method by Eulderink&Mellema [4], the steps
taken to solve the Euler equations do not change, only the formulas concerning
the Roe solver will be modified slightly. In Section A.4, the Fuler equations are
given in terms of the new radial coordinate ¢:

gt (r*r'p) + (r ' pug) = (2.98)

bom el o+3]

rel ! 2 r! Or
®
5 (r*r'e) + % (r’r' e+ Plog) = —rzr’pr’vgg—r (2.100)
The total energy density e of the gas is given by:
1 P
e = §p’l”’2’l)[2 + m (2101)

Using the vector notation from Section 2.3, the state, flux and source vectors
become:

p pue
W =02 | pve |, F=r%"[ pv?+ T%
e {6 + P} (7
0
S=r’'| 25 - {,OW S (2.102)

[l
—p?“ Vo5 7
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The new eigenvalues and eigenvectors of the Jacobian (see Section 2.3.1) are
derived in Section B.1 and take the following form:

AL =g, Ao = v+ — A = vp — o (2.103)
1 1 1
€1 = A1 > €2 — A2 s €3 — A3
3’ L+ r'uges P — e,
(2.104)

The sound speed c¢; is still given by (2.11). The new projection coefficients b,
are:

r-1 P .
b1 = —2 (l:e + - 7“/21}[2] AFl +TIZ‘/[AF2 - AF3>

Cs p
L—1/1, , . r!

by = 5 | gr v AR — o AR + ARy | 4 o— (AR - AF)
Cs s
L—1/1, , . r!

by = =P AR — Py AR, + AFs | — (Ve AL — AF)
2¢,2 \ 2 2¢5

(2.105)

For A., e. and b., ' needs to be evaluated at the interface. The weight factor
K for the Roe averages is now defined by K2 = r2r'p. The CFL-condition has
the following form:

A
At = B (2.106)
The interpolation parameters v, are given by:
A
_ 2.107
Ve T AU/ (2.107)
For this report, the used transformation is a power law:
rig)y =0 o r)= rE, a>0 (2.108)

Choosing this form prevents the introduction of some intrinsic distance scale.
Differentiating r to £ gives:

P =1+ a)f*, ) =a(l+a) it (2.109)

Assuming £y, = AL/2, so that ¢; = ¢AL, the ratio & of radial sizes Ar; to Ary
is approximated by:

f»:AriNr;Al_(l—l-a)lia_ L o 1AL a_ia N
TAn T AT (Mo T \L) T \Aar) T

 In(&)
o (2.110)

This shows that the radial size of the cells increases with increasing i.
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2.4.6 Gravitational force and potential
Calculation of the gravitational force F; is simple with the use of the numerical

analogons of (2.24) and (2.27). First, the enclosed mass excess M; is calculated
by using:
M; =0,
i1 i1
M; = Z47r7'2[pa — pN+1]Ar, = Z47ﬂ"§[pa — pna1lrh AL (2.111)
a=1 a=1

Here, (2.97) was used. The mass density pyy1 in the outer boundary cell of
the grid is taken to be the mass density pen, of the environment. Basically, M;
contains the sum of the mass within cells 1 to i — 1, so M1 must be zero. Next,
the gravitational force Fj is calculated by using:

GM;
2

Fy=— (2.112)

ri

According to (2.28), numerical integration of F; gives the gravitational potential
(I)i:

o _ GMny
N4l = ——
TN+1
N N
=¥y + > Fulrg=3n11+ Y Far,Al (2.113)

Integration of @51 can be done analytically, because M = My forr > ryig
(it is assumed that p = pepy = pn41 for ¥ > rysq).

2.4.7 Stationary solutions

According to Appendix B.2, it is (in theory) possible to find a configuration
of gas parameters that stays constant in time. In other words, when starting
out with a special set of functions p(r,t = 0), P(r,t = 0) and v,(r,t = 0)
that together form a stationary solution, these functions do not change as a
function of time, so p(r,t = T) = p(r,t = 0), P(r,t = T) = P(r,t = 0) and
ve(r,t =T) = v.(r,t = 0) for any value of T'.

Appendix B.2 contains the derivation of a set of three parameters, {D, B, k},
that are constants in both space and time. The mass flux D is given by:

D =721 puy = r?pu, (2.114)

Bernoulli’s constant B is the sum of the enthalpy H and the gravitational po-
tential ® and is given by:

P 1 r p
L Y S N (2.115)

B=H+&= 5 15,

The total energy density e is defined in (2.33). The constant x gives the adiabatic
relation between p and P:

k= (2.116)
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Tt is easy to see that for a physical solution (p > 0, P > 0 and v, any real value),
it follows that H = B — ® > 0 and & > 0 must be true, while D can have any
real value.

All stationary solutions have a unique set of values for {D, B, k}. However,
not all sets {D, B, x} lead to possible solutions {see Eulderink&Mellema [4], Sec-
tion 6.3). One way to check whether any solution exists for a given set {D, B, k},
and to find this solution, is to combine (2.114), (2.115) and (2.116) into a single
function f:

N2

HY
r-1
Here, P and v, are eliminated in favour of p. The problem has now been trans-

formed into finding the roots of f. Algebraic expressions for the roots of f can
only be found when D = 0 (equivalent with v, = 0). In that case:

[/ Tx
=\

o \
oY L —1 B-@ Z:
P ( ))p 0 =
1
I—1B-¢\™
p= <— ) = pp=0 (2.118)

ATl —(B-®)p?=0 (2.117)

r—
r K
Note that p = 0 is also a solution, but lies outside the domain p > 0.
Examining f for D # 0, it follows that f — D?/(2r*) for p — 0 and f — +oc
for p — oo. Both limits are greater than zero, so if any roots are to be found,
the minimum of f must be less than or equal to zero. The minimum of f is
found using;:

of L+ Dk v op_g)p=0 =

dp  I'—1
(2T -DB-®\™ _
p= <WT> = Pmin (2.119)

With D # 0, f(pmin) < 0 corresponds to two roots, f(pmin) = 0 with one root
and f(pmin) > 0 with zero roots. Eulderink&Mellema, [4] (Section 6.3) state that
a single root corresponds to a solution with exact sonic velocity ([v,| = ¢5). With
two roots, the lower value corresponds with a supersonic solution {|v,| > ¢5)
while the higher value corresponds to a subsonic solution (|v,.| < ¢s). They also
state that a stationary solution cannot contain a transition from a subsonic flow
to a supersonic flow or reverse. At such a transition, the sonic point is crossed
and a shockwave appears. This makes & no longer a constant (see Section 2.1.1).

For testing purposes, it is best to stay away from the sonic point and limit
the search for stationary solutions to pure supersonic or subsonic solutions. The
special case D = 0 is clearly a subsonic solution, for v,, = 0 for all r. For D # 0,
it can be shown that the supersonic root ps,, and the subsonic root p,,; are
limited to the following domains:

0 < Psup < Pmin < Psub < PD=0 (2120)

When p, P, v, and ® are known at some radius r, (2.114), (2.115) and
(2.116) can be used to determine {D, B, x}. The next step would be calculating
the roots of f for new values of r, which gives p at the new r. After that, (2.114)
and (2.116) gives v, and P at the new r. However, there are several things which
make this approach more difficult:
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e & is the gravitational potential and includes self-gravity. Therefore, ®
depends on the actual value of p at all r. So, p should be known before p
can be calculated.

e Even if & is known beforehand, there exists no algebraic expression for
the roots of f when D # 0.

o It follows that f can have zero, one or two roots. With two roots, a correct
choice must be made between the two possible values of p.

The following numerical procedure was used to handle these difficulties and find
a self-consistent stationary solution:

1. Choose p1, P; and v, at radius r;. Calculate the sound speed ¢; from p;
and P, using (2.11). Check whether v, ; is subsonic or supersonic, as this
will be the sonic state for the whole stationary solution.

2. Choose some initial mass density distribution p; which includes the point
{r1,p1}. (For this report, a p ~ r~2 distribution was used.) Calculate the
gravitational potential ®; from r; and p; using (2.111)-(2.113).

3. Calculate D, B and & from ry1, p1, P1, v,1 and @, using (2.114)-(2.116).

4. Tterate towards a self-consistent mass density distribution p;. This is done
by repeating the following steps (for this report 200 times):

(a) For each 4, calculate the correct root of f using D, B, &, r;, ®; and
the sonic state information found in step 1. This gives a new mass
density p;. The iteration procedure for finding the root follows below.

(b) For each i, update the mass density p; by taking an weighted average
of the new mass density just found and the previous mass density.
(For this report, the update used was p = (pPnew + 7pora)/8.) This
slows down the iteration, but makes it more stable.

(c) For each 4, update P; and v, ; from D, s, 7; and the updated p; using
(2.114) and (2.116).

(d) Update ®; from r; and the updated p; using (2.111)-(2.113).
(e) Update B from r; and the updated p1, Pi, v, 1 and ®; using (2.115).

The following numerical procedure was used to find the correct root of f in
step 4a above:

1. Check if B — ®; > 0. If not, the iteration towards a self-consistent mass
density distribution failed.

2. Check if D = 0. If so, calculate the root p; directly using (2.118) and skip
the steps below.

3. Otherwise, calculate pn, from B, x and ®; using (2.119). Calculate f
from D, B, &, 74, pmin and ®; using (2.117). Check if f < 0. If not, the
iteration towards a self-consistent mass density distribution failed.
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4. Tterate towards the correct root of f using the bisection method (e.g. see
Press et al. [12], Section 9.1). (For this report, 100 bisection steps were
performed for each root.) Good starting values are p; = 0 and pa = pmin
when the flow is supersonic or p; = pmin and ps = pp—¢ when the flow is
subsonic.

Bisection might be slow compared to other methods, but very stable. The
Newton-Raphson method (Press et al. [12], Section 9.4) was also tried, but
proved to be too unstable.
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Results

3.1 Test results

In this section, the results of three test problems are presented. These test
problems are performed to gain some insight in the stability and accuracy of
the model.

3.1.1 Pressure equilibrium without gravity

In this test problem the time evolution of a top-hat mass density distribution
in rest is simulated. Special for this test problem is that both the gravitational
force and potential are both set to zero and that the mass density distribution
is in pressure equilibrium. Because there are no physical mechanisms to induce
movement, in the gas, it is expected that the simulated mass density distribution
will stay in rest over many free-fall times. However, due to limited numerical
precision and limited precision of the numerical method used, the simulation will
inevitably introduce changes in the configuration away from the initial setup.
Preferably, these changes will be small and will lead to a stable configuration.
The basic setup is a dense cloud of 1 Jeans mass with temperature 1 K,
embedded in a less dense environment with temperature 10* K. The pressure is
3.50 x 10° cm ™3 K = 4.83 x 107'* N m~2 everywhere. These values are close
to values measured for a protostellar cloud in the interstellar medium. The top-
hat cloud is by no means a stable mass density distribution in the presence of
self-gravity. Because of the top-hat cloud, there is a mass density discontinuity
at r = Ry. The grid runs from 0-2 Jeans radii, divided into 100 cells with
« = 0. On the inner boundary a reflective boundary condition is set, while on
the outer bounday an in/outflow boundary condition is set. The simulation time

37
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is 2 free-fall times. A summary of the relevant simulation parameters:

r= 27 p=1

N = 250, a=0

My =1.56 Mg, Ry =3.36 x 10* AU

typ = 8.70 x 10° yr, toim = 1.74 x 10¢ yr

Rpin = 0 AU, Ripas = 2.01 x 10° AU

R, = 3.36 x 10* AU, R, =6.71 x 10* AU

pel = 5.86 x 10718 kg m=32, Penv = 5.86 x 10722 kg m™°
P, =483 x 107 N m™2, Py =4.83x 10714 N m~2
Vror =0m s_l, Upeny =0 m st

During the simulation of 2 free-fall times, there was no detectable change
in the mass density p or the pressure P within a factor of 107> of the initial
value over the whole grid. The velocity v, fluctuates around zero with a largest
deviation of less than 1071 m s~!, which seems to make the velocity fluctuations
insignificant. Figure 3.1 shows the velocity deviation Aw, from initial conditions
during the simulation. From this figure, it can be seen that the low mass density
area r > R shows relatively more numerical fluctuations than the high mass
density area r < R.. Around the discontinuity r = R, numerical diffusion
starts a small mass flow outwards. Because the small velocity deviations do not
induce significant changes in the mass density or the pressure, it seems that
these effects can be ignored.

A second test run was performed with the same simulation parameters, ex-
cept that the number of cells was increased to N = 250. This means that the
width of all grid cells is 2.5 times as small as before. The results are quite dif-
ferent from the simulation with N = 100. In the innermost cells near r = 0, p,
P and v, change significantly. Immediately after the simulation starts, in the
innermost cell, p and P drop to ~ 73% and ~ 61% of their initial values, while
v, increases to ~ 60 m s~'. A few neighbouring cells are effected as well in p, P
and v,., but far less than the innermost cell. Considering the rest of the grid, the
largest velocity deviation is ~ 0.1 m s~'. Figures 3.2-3.4 show the deviations in
mass density Ap, pressure AP and velocity Aw, from initial conditions during
the simulation, excluding the 10 innermost grid cells. From this figure, it can
be seen that some flow is bouncing between the boundaries of the high mass
density area r < R,;. The mass density is also showing a deviation around the
discontinuity r = R.;, probably caused by diffusion into the low mass density
area. Both these effects change the gas state on the grid up to a few percent in
pand P and ~ 1 m s~!, which is significantly less than the deviations on the
most inner part of the grid.

A third test run was performed to see how the introduction of a new ra-
dial coordinate ¢ (with r(£) = £'+%) effects the results above. The simulation
parameters are the same as the first run, except that a = In (10)/1n (N). This
means that the most inner cell of the grid is 10 times ag small as the most outer
cell (see (2.110)). The results are very similar to the results of N = 250 and
a = 0. The innermost cell shows the largest deviations in p, P and v,, while
some wave is bouncing the high mass density area r < Ry. Also, the diffusion
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Figure 3.1: Velocity deviation Aw, from initial pressure equilibrium configura-
tion (without self-gravity) during simulation with N = 100 and « = 0.
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Figure 3.2: Mass density deviation Ap from initial pressure equilibrium config-
uration (without self-gravity) during simulation with N = 250 and o = 0.
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pressure deviation
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Figure 3.3: Pressure deviation AP from initial pressure equilibrium configura-

tion (without self-gravity) during simulation with N = 250 and « = 0.
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around r = R is present.

These test runs show that a grid with N = 100 and « = 0 performs well when
keeping a top-hat mass density without self-gravity in pressure equilibrium.
Increasing resolution (smaller cells) in the inner part of the grid, by increasing N
or «, seems to introduce some artefacts in the numerical method. An unphysical
flow is generated at » = 0 and travels outwards over the grid. Furthermore, the
discontinuity at r = R, triggers a numerical diffusion into the low mass density
area. Possible sources of error are given at the end of Section 3.1.3. Considering
these problems, the grid with N = 100 and @ = In (10)/1n (N) does not perform
worse than the grid with V = 250 and o = 0. An unexpected side-effect of these
test runs is that the inner boundary condition got tested on reflection of waves
running inwards. As expected, these waves were reflected and bounce back onto
the grid.

3.1.2 Hydrostatic equilibrium

In this test problem the time evolution of a hydrostatic equilibrium is simulated
(including gravity), which is basically a stationary solution with v, = 0 every-
where. It is expected (see Section B.2) that the hydrostatic equilibrium will stay
stationary over many free-fall times. However, due to limited numerical preci-
sion and limited precision of the numerical method used, the simulation will
inevitably introduce changes in the configuration away from the initial setup.
Preferably, these changes will be small and will lead to a new, hydrostatic equi-
librium configuration.

The basic setup is a dense cloud core with central temperature 1 K and
central pressure 4.83 x 1074 N m ™2, so that the central mass density is 5.86 x
10718 kg m~2 (same as in Section 3.1.1). The core is in hydrostatic equilibrium,
thus the pressure gradient outwards balances the gravitational pull inwards.
Using the method in Section 2.4.7, the hydrostatic equilibrium is calculated
for the whole grid. The grid runs from 0 — 1.45 Jeans radii (the method in
Section 2.4.7 wouldn’t allow a larger radius), divided into 100 cells with « = 0.
On the inner boundary a reflective boundary condition is set, while on the outer
bounday an in/outflow boundary condition is set. The simulation time is 2 free-
fall times. A summary of the relevant simulation parameters:

-5 ot
N =100, a=0
Mj; =156 Mg, R; =336 x 10* AU
typ = 8.70 x 10° yr, tsim = 1.74 x 10° yr
Rpin = 0 AU, Rppas = 4.82 x 10* AU
Pe=5.86x 1078 kg m™3, P.=483x 107" N m™2
v, =0m s !

The calculation of the Jeans mass, Jeans radius and free-fall time is based on
the central mass density p. and central pressure P..

Figures 3.5-3.7 show the initial mass density, pressure and velocity profiles
that result from the hydrostatic equilibrium calculation. Both the mass den-
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sity and the pressure decrease with increasing radius and the velocity is zero
everywhere, as expected.

Figures 3.8-3.10 show the deviations in mass density Ap, pressure AP and
velocity Av = Aw, from the initial hydrostatic equilibrium during simulation.
The maps of Ap and AP are similar, with the largest deviations halfway the
simulation near the centre to ~ 3% of the initial values. The velocity has its
largest deviation increasing towards the end of the simulation at the outer edge
of the grid to ~ 2 m s~'. This increasing deviation in velocity at the outer
boundary indicates a slightly non-stable configuration, for this represents a mass
outflow off the grid. During the simulation, the total mass excess of the cloud
M = 0.89 Mg stays practically constant.

A second test run was performed with the same simulation parameters, ex-
cept that the number of cells was increased to N = 250. The results are almost
similar to the results of the first test run, except that the largest deviations Ap
and AP are ~ 1% of the initial values. The velocity has its largest deviation
at ~ 1 m s~ 1. The total mass excess of the cloud is M = 0.87 M, slightly less
than in the first test run, stays constant.

A third test run was performed with N = 100 and o =1n (10)/In (V). The
results for p, P and v, are very similar to the results of the first and second test
run. However, in this test run, the deviations Ap, AP and Av, are dominated by
a large deviation at the innermost cell. This effect seems similar to the observed
artefacts in the test runs of Section 3.1.1. The largest deviations Ap and AP
are now ~ 30 — 50% of the initial values. The largest deviation of Aw, is also
found at the inner boundary at ~ 60 m s~ . The total mass excess of the cloud
is M = 0.90 Mg, slightly more than in the first and second test run, stays
constant.

These test runs show that a grid with N = 100 and « = 0 performs well when
keeping a hydrstatic equilibrium configuration in equilibrium. The deviations are
small compared to the actual state values and the small mass outflow does not
seem to influence the configuration. Increase in the number of cells to N = 250
results in an even better performance of the model. Additional testing shows that
this improves even more with N = 500. Using the grid with e = In (10)/ In (250)
and N = 100 introduces an unphysical artefact at the innermost part of the grid.
This seems similar to the observed artefacts in the test runs of Section 3.1.1,
although they are not present for the o = 0 test runs. Possible sources of error
are given at the end of Section 3.1.3.

3.1.3 Supersonic stationary flow

In this test problem the time evolution of a stationary flow is simulated, in-
cluding gravity. Because of its nature (see Section B.2), it is expected that the
stationary flow will stay the same over many free-fall times. However, due to
limited numerical precision and limited precision of the numerical method used,
the simulation will inevitably introduce changes in the configuration away from
the initial setup. Preferably, these changes will be small and will lead to a new,
stationary configuration.

The basic setup is a dense cloud core with central temperature 1 K and
central pressure 4.83 x 1074 N m ™2, so that the central mass density is 5.86 x
10718 kg m—3. A wind is blowing radially outwards from this core at a central
supersonic velocity of Mach M = 2.0. Using the method in Section 2.4.7, the
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Figure 3.5: Calculated mass density p of hydrostatic equilibrium at the beginning
of the simulation.
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Figure 3.7: Calculated velocity v, of hydrostatic equilibrium at the beginning
of the simulation.
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stationary flow is calculated for the whole grid. This method did not give solu-
tions for r,;, = 0, so the 2 innermost cells of the grid were skipped. The grid
consists of 100 cells (+2) with & = 0. On both the inner and outer boundary,
an in/outflow boundary condition was set. The simulation time is 10 free-fall
times (based on the central gas state). A summary of the relevant simulation
parameters:

r= %, p=1

N = 100(+2), a=0

My =1.56 Mg, Ry =3.36 x 10 AU

trp = 8.70 x 10° yr, teim = 4.35 x 107 yr
Rpin = 1.66 x 10* AU, Rpnas = 8.47 x 10° AU
Pe=5.86x 1078 kg m™3, P.=483x 107" N m™2
cs =117 x 10> m s~ 1, Vpe =234 %x 10° m 57!

Figures 3.11-3.13 show the mass density, pressure and velocity profiles that
result from determining the stationary flow. Both the mass density and the
pressure peak in the centre and drop at increasing radius. The velocity however,
peaks just off centre.

Figures 3.14-3.16 are maps of the mass density p, pressure P and velocity v,
as functions of space and time. From these figures, it can be seen that some sort
of wave is running from the inner boundary outwards over the outer boundary.
This is probably an adjustment within the first few cells just after the start of
the simulation, which propagates outwards. It looks like p and v, do not change
when the wave passes through, but P is slightly decreased. The simulation is
continued for some time after the wave runs off the grid, but no more changes
are visible. The second test run, with N = 250 (+2), gives similar results. The
third test run with N = 100 and « = In (10)/In (250) also shows a propagating
wave from the centre, but now P is slightly increased afterwards.

The three test runs show that none of the grids is able to keep the super-
sonic stationary flow in its initial form. All grids suffer from a deviation at the
innermost, part of the grid, which propagates as a wave outwards. This wave
changes the gas state over the whole grid. This new state appears to be a true
stationary solution for the grid used, as it doesn’t seem to be changing any-
more. Converging to a new stationary state instead of diverging can be seen as
an indication of stability of the model. An unexpected side-effect of these test
runs is that the outer boundary condition gets tested on non-reflection of waves
running outwards. As expected, these waves run off the grid without reflection.

3.1.4 Summary

When considering the pressure equilibrium results, increasing the number of
cells on the inner grid (by increasing N or «) did not improve the accuracy. On
the contrary, a relatively large deviation in the gas state was detected at the
innermost cells of the grid. This deviation induced waves upon the grid, thereby
also influencing the gas state on other parts of the grid. When considering the
hydrostatic equilibrium results, increasing N made the deviations smaller, thus
improving the accuracy. The accuracy decreased when a was increased, because
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Figure 3.11: Calculated mass density p of supersonic stationary flow at the
beginning of the simulation.
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Figure 3.12: Calculated pressure P of supersonic stationary flow at the beginning
of the simulation.
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Figure 3.13: Calculated velocity v, of supersonic stationary flow at the beginning
of the simulation.
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of a large deviation at the inner cells. When considering the stationary flow
results, it is seen that all grids re-adjust the initial gas state from the inside out,
to gain a new stationary state.

The thing that is common in the results of all three test problems is the
unpredictable performance of the innermost part of the grid. A possible cause
of the effects seen, is the fact that near the origin, the radial coordinate £ be-
comes comparable to the cell size A¢. At these radii, the volume term r;2r;/Af
(that shows up in numerical integration of the Euler equations and the grav-
itational force) is a poor (too large) approximation for the true volume term

% (rH;?’ — 7*2-7;3). Another possible cause is the fact that in some test runs
2 2

the gradients of p, P and v, are largest near the centre. As a result, these gas
state parameters tend to vary the most within the boundaries of the innermost
cells. When these cells are too wide, the average state of these cells might not
be representative for the whole cell (see Section 2.4.1). Both explanations are
plausible, when addressing the fact that in both test runs the deviations from
the stationary solution are largest near the centre. And there is also a possibility
that the computer model contains bugs, which generates behaviour of the grid
that differs from the intended model behaviour.

Although it is hard to draw any hard conclusions, it is advisable, on the
basis of the results above, not to use a high cell count N or use an « # 0 unless
it is absolutely necessary.

3.2 Simulation results

In this section, the results of two simulations with different initial conditions
are presented. The first simulation comprises the gravitational collapse of an
isothermal top-hat mass distribution, while the second simulation comprises
the gravitational collapse of a mass distribution just off hydrostatic equilibrium.
Both simulations were performed by other authors as well, so it is easier to verify
the results.

3.2.1 Larson’s isothermal collapsing sphere

Larson [8] was one of the first to use numerical hydrodynamical models to sim-
ulate collapsing proto-stars. His model consists of a spherically symmetric, top-
hat mass density distribution, with no rotation, magnetic fields and turbulent
motions. His model does include simple radiative and convective energy transfer.
During the first stages of the gravitational collapse of his model, Larson assumes
that the cloud is optically transparent, so that all radiation is transmitted away
without heating the gas. He therefore assumes an isothermal collapse.

Larson starts out with a 1 My cloud with temperature T' = 10 K, mass
density p = 1.10 x 107%% kg m~3 and relative particle mass p = 2.46 (which
includes dust). In this section, the isothermal part of Larson’s collapse is re-
simulated up to 4.44 x 10° yr, the time at which Larson’s model formed a dense
core. The isothermal behaviour is imitated by choosing I' close to one. Larson’s
model does not include a low mass density environment, but that seems a bit
artificial. Here, the environment is set to p = 1.10 x 10719 kg m~3. A summary
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of the relevant simulation parameters:

I = 1.001, p=2.46
N =100, a=0

My =5.14 Mg, Ry =4.05x10° AU

trr = 2.01 x 10° yr, tsim = 4.44 x 10° yr

Rin = 0.0 AU, Rz = 1.21 x 10% AU

Ry =1.09 x 10* AU, M =1.00 Mg

pe =110 % 1071 kg m™3, Penp = 1.10 x 1071 kg m™3

Py =Py =372x 1072 Nm™2 w0 = Vpeny =0m s

The resulting simulated mass density distribution is shown in Figure 3.17.
It is observed that the dense core forms in half the time of Larson’s model,
namely ~ 2.2 x 10° yr. This is in good agreement with the calculated free-fall
time. Larson claims that the free-fall time of his model is strongly affected by
the absence of the low mass density environment.

To make a better comparison with Larson’s results, the simulation was re-
peated with a higher resolution (N = 500) and shorter simulation time g, =
1.2 t;y = 2.41 x 10° yrs. The results are presented in Figures 3.18-3.23.
During the collapse, the mass density and the pressure show an enormous in-
crease by a factor 10* — 109, strongly peaked at the centre of the cloud. It is at
this time that the model becomes increasingly unphysical, because the extreme
situation in the centre will lead to an increase of all sorts of gas interactions,
like chemical reactions and (de-)excitation and (de-)ionisation of gas particles.
The opacity of the central core will increase, trapping radiation within, causing
the temperature of the core to rise. This behaviour is not incorporated in the
model.

The simulation results can be expected to be valid until first core formation.
The core formation time is defined as the time at which the central velocity
over sound speed ratio reaches its first (negative) peak. At that time (~ 2.19 x
10° yr = 1.09 ts¢), already ~ 90% of the mass is within 50% of the cloud’s
initial radius. The outer boundary of the cloud only moves slowly towards the
centre. Within the boundary of the cloud, the temperature stays constant at
~ 10 K, as can be expected of an isothermal cloud.

Figure 3.24 shows a reproduction of Figure 1 from Larson [8] {see Figure 1.1}.
This shows an p ~ r~ 2 dependence for the mass density on the outer boundary
of the collapsing cloud. Apart from a different time scale, there is a good match
between both figures, although Larson is able to simulate closer to r = 0. The
presence or absence of an environment appears not to influence the observed
p ~ r~2 dependence.

As can be seen in Figure 3.24, the mass density plots only run until r ~
10" ¢m on the inside of the grid, which equals the centre of the innermost
grid cell. To get closer to zero, the number of grid cells near r = 0 needs to be
increased even more. This can be done by increasing the number of grid cells N
or by increasing «. Multiple simulations were performed with larger N and/or
a # 0. However, all of these simulations ended prematurely, because of negative
pressure at the centre grid cell.

Problems with negative pressure arise when the mass density in the centre
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Figure 3.19: Simulated pressure P during an isothermal top-hat collapse with
N =500 and « = 0.
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isothermal top-hat collapse with N = 500 and o = 0.
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Figure 3.23: Simulated enclosed mass excess M (r) during an isothermal top-hat
collapse with N = 500 and « = 0.
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cell gets too high. In this case, having a larger centre cell helps to smear out a
high mass density gradient over a larger volume, which results in a lower average
mass density. In this case, a decrease in resolution near r = 0 actually helps to
make the simulations more stable.

3.2.2 TFoster & Chevalier’s marginaily stabie sphere
Foster& Chevalier [6] performed similar simulations as Larson (see Section 3.2.1),
but their initial mass density distribution is that of a dense cloud, close to

hydrostatic equilibrium, embedded in a low mass density environment. They
introduce dimensionless parameters to make the whole problem scalable:

D:ﬁ, T =+/4nGp, t

u = U—r, £ =\/4rGp. r (3.1)
Cs Cs
Foster&Chevalier do not take the beginning of the simulation, but the core
formation time as 7 = 0.

By solving the hydrostatic equilibrium problem with these parameters, Fos-
ter& Chevalier reduce the number of free parameters of the model to one: the
outer boundary &, of the cloud. The environment is in pressure balance with
the cloud boundary, but has a mass density which is a factor 1076 less. They
make the collapse of a marginally stable sphere their standard test case, which
has &; = 6.451. To make the cloud collapse, the gas state is perturbed by
enhancement of the mass density and pressure of the whole setup by 10%. Fos-
ter&Chevalier [6] found that it takes AT = 11.2 from the start of the simulation
for the outer part of the cloud to collapse to the centre.

In this section, the isothermal collapse of the marginally stable cloud is re-
simulated. To give the simulation some physical relevance, the central properties
of the cloud are taken from Larsons’s top-hat cloud in Section 3.2.1. With central
mass density p. = 1.10 x 1076 kg m~3 and central pressure P, = 3.72 x
10712 N m~2, it follows from (3.1) that 7 = 1 corresponds to t = 1.04 x 10° yr
(= 0520 tsf) and € = 1 to r = 4.03 x 10 AU (= 1.00 x 1072 Ry). From
these, a hydrostatic equilibrium is calculated with the method in Section 2.4.7,
up to a cloud radius of R, = 2.61 x 10* AU (which equals &; = 6.451). The
environment pressure and mass density are constant and are derived from the
gas state at the cloud boundary. After the 10% enhancement, this results in a
cloud of 2.68 M. The simulation time is set to A7 = 14.0 which corresponds
to 1.46 x 10% yr. A summary of the relevant simulation parameters:

' = 1.001, p=2.46

N = 100, a=0

My =5.14 x 10* M, Ry =4.05 x 10* AU

trp = 2.01 x 10° yr, tsim = 1.46 x 10% yr
Ropin =0 AU, Rmaz = 2.90 x 10* AU
pe=1.10x 107 kg m=2, P.=372x1072 N m~?

— _ —1
Vr,cl = Ur,env = 0m s
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The calculation of the Jeans mass, Jeans radius and free-fall time is based on
the central mass density p. and central pressure P..

The resulting simulated mass density distribution is shown in Figure 3.25.
It is observed that the dense core forms in ~ 7.3 x 10° yr, that is ~ 3.6 t7y or
AT = 7.00. Note that the value of t¢; is based on central values of p and P,
not, on their average values, so this might explain why the core formation takes
more than 1 #;.

The simulation was repeated with a higher resolution (N = 500) and shorter
simulation time tg, = 4.3 t;; = 8.63 x 10° yrs, corresponding to A7 = 8.27.
The results are presented in Figures 3.26-3.31  When considering the general
behaviour of the cloud, the collapse looks very similar to Larson’s collapsing top-
hat cloud. The mass density and the pressure show a central increase by a factor
10% — 109, while the temperature stays constant within the cloud’s boundary. At
core formation time, (t = 7.28 x 10° yr), ~ 70% of the mass is within 50% of the
cloud’s initial radius. Compared to Larson’s collapsing top-hat cloud, the mass
flow inwards is slower. This might well be explained by the fact that Larson’s
collapsing top-hat cloud is initially much farther from hydrostatic equilibrium
than Foster&Chevalier’s enhanced marginally stable sphere.

Figures 3.32-3.33 are reproductions of Figures 1(a) and 1(b) from Foster&
Chevalier [6] (see Figure 1.2), expressed in the dimensionless units of (3.1).
Figure 3.32 shows an £ ~ p ~ r~2 dependence for the mass density on the outer
boundary of the collapsing cloud, similar to Larson’s top-hat collapse. Apart
from a different time scale, there is a good match between both figures, except
for the result at 7 = 0.00. The mass density deviates upwards, where it should
still follow the p ~ r~2 law. Figure 3.33 shows the time development of the
velocity to sound speed ratio u. Again, apart from a different time scale, the
figure matches the results of Foster& Chevalier, except for the result at 7 = 0.00.
Where u should gradually converge to Mach —3.3 inwards along a smooth curve
connecting the plots on the outside, it shows an enormous deviation to much
lower values of u.

As can be seen in Figures 3.32-3.33, both plots only run until £ ~ 1 on
the inside of the grid, which equals the centre of the innermost grid cell. This is
far less than Foster&Chevalier, who reach £ ~ 1078, Multiple simulations were
performed with larger N and « # 0. However, all of these simulations ended
premature, because of negative pressure at the centre grid cell.

0—2.12
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Figure 3.25: Simulated mass density p during the isothermal collapse of an

enhanced hydrostatic cloud with N = 100 and o = 0.
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enhanced hydrostatic cloud with N = 500 and o = 0.
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Figure 3.27: Simulated pressure P during the isothermal collapse of an enhanced
hydrostatic cloud with N = 500 and a = 0.
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Figure 3.28: Simulated velocity v, during the isothermal collapse of an enhanced
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Figure 3.29: Simulated (radially signed) Mach number M = v, /cs; during the
isothermal collapse of an enhanced hydrostatic cloud with N = 500 and o = 0.
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Figure 3.30: Simulated temperature T during the isothermal collapse of an en-
hanced hydrostatic cloud with NV = 500 and « = 0.
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Figure 3.31: Simulated enclosed mass excess M (r) during the isothermal collapse
of an enhanced hydrostatic cloud with N = 500 and o = 0.

0g,4(0)

Figure 3.32: Reproduction of the mass density dependence p ~ r=2 found by
Foster&Chevalier, expressed in their dimensionless units (see (3.1)). From bot-
tom to top, the simulation times are 7 = —7.40, —0.972, —0.173, —0.0694,
—0.0346 and 0.00.
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Chapter 4

Discussion

4.1 Summary

Using the general relativistic approach of Eulderink&Mellema [4], the non-
relativistic Fuler equations for spherical coordinates were derived, including
gravity, where the radial distance r was replaced by a general radial coordinate
£. This way, it was possible to create a simulation model where the cell width
Ar of the spatial grid is variable. This can be applied to increase the number of
cells in areas where a higher spatial resolution is required.

These new Euler equations were incorporated in the Roe solver, a numerical
method to integrate the Euler equations to second order accuracy. For this
method, the eigenvalues and eigenvectors of the Jacobian were determined, as
well as the projection coeflicients.

The application for the model was the 1-dimensional study of the gravita-
tional collapse of a spherically symmetric, non-rotating cloud of gas. Because
the Roe solver uses a fixed grid (fixed in space), extra spatial resolution is re-
quired near the origin, where the collapsing mass is expected to generate high
gradients for all gas parameters.

Several simulations were performed to test the functionality and accuracy
of the model. These included a pressure equilibrium (without gravity), a hydro-
static equilibrium and a supersonic stationary flow.

The evolution of two standard configurations, a top-hat (Larson [8]) and an
enhanced hydrostatic equilibrium (Foster&Chevalier [6]), were simulated and
compared to literature results.

4.2 Conclusions

The main application of this new Roe solver was the study of gravitationally
collapsing clouds of gas in space. For this, a spatial grid was used which covered
all space from the origin at » = 0 up to some radius outside the cloud. The used
radial coordinate transformation was r = £1t%  « > 0, which increases the
number of cells on the inner part of the grid when « > 0. The test results are
summarized in Section 3.1.4. Apart from the artefacts near r = 0, the variable
grid (grid with variable radial cell widths, o > 0) produces similar results as
the constant grids (grids with constant radial cell widths, o = 0). This suggests

63
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that the observed problems relate to the numerical method itself, rather than
the variable grid.

Although it was attempted to reproduce simulation results of Larson [8] and
Foster& Chevalier, this only succeeded to a certain level. Both simulations clearly
reproduce the p ~ r~2 dependence that characterises the mass density at the
outer part, of the collapsing cloud. However, both Larson and Foster&Chevalier
were able to get their simulations running much closer to » = 0 than the Roe
solver could. Verification of the observed Mach —3.3 central infall velocity by
Foster& Chevalier was not possible.

Here is a summary of the unexpected behaviour of the computer model:

e At the beginning of each simulation, in the centermost cell of the radial
grid, near r = 0, an unphysical deviation in the gas state variables appears
and maintains. A number of neighbouring cells are also effected.

e The deviation acts as a source of pressure waves, which travel outward
on the grid, reflecting on steep density gradients. Hence, the state of the
whole grid is affected.

o Repeating the simulation with increased resolution {(number of cells) near
r = 0 enhances the deviation. Decreasing the regolution reduces the devi-
ation, until it disappears.

It is at the moment uncertain what causes this behaviour. Some possible
causes are:

e In the numerical calculations, the volume of a cell with its cell centre
at ¢ and width Af is approximated by r(¢£)?r'(¢)Af. This approximation
becomes worse when ¢ becomes comparable to AZ. This is the case near
r = 0, where the deviation is observed.

e The gas state at the geometrical cell centre £ is chosen to represent the
average state of the whole cell (see Section 2.4.2). However, according to
Eq. (2.84), the average state is found by integrating the product of the
state and the volume term over the whole cell. Therefore, it might be more
valid to use the centre of volume (which is equal to the centre of gravity,
when assuming a constant mass density within each cell) instead of the
geometrical cell centre to approximate the average cell state. Note that
the integral in (2.84) cannot be calculated, because the state is not known
at every point within the cell.

e The computer model might contain a bug, which induces a deviation at the
innermost cell. If true, the bug is most probably related to the calculation
of the inner boundary condition, as this explains the local character of the
deviation.

Problems as the ones observed, are also described by others using curvilinear
grids, such as Blondin&Lufkin (1993). They made use of a specially adapted
method to numerically solve the Euler equations near coordinate singularities,
developed by Ménchmeyer&Miiller (1989). This method focuses on undoing the
errors that are made in the approximations when 7 (or £) is of the same order
of magnitude as Ar (or Af). One improvement is choosing cell centres based on
volume rather than geometry.
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Before any further attempts are made to simulate gravitational collapse, it is
crucial to resolve the problems that persist in the innermost cell of the grid while
running simulations at higher resolution. It is only then that a fair comparison
can be made between the performance of the constant grids and the variable
grids.

Additional testing of the computer model might identify the source(s) of the
observed problems. However, this will not be part of this small research project.
The two main reagons for prematurely ending this research are:

e For the small research projct in Leiden’s curriculum there is only a limited
amount of time available.

e The main goal of the small research project is the introduction into as-
trophysical research, rather than a true research project where results are
most important.

Although the small research project did not produce all the anticipated research
results, it was successful in giving a good introduction into hydrodynamics and
serving as an advancement in numerical techniques.

4.3 Future work

Highest priority is given to resolving the problems near r = 0. Before that, the
simulation output is not to be trusted. Accuracy of the simulations might be
improved by using true stationary extrapolation instead of the the approxima-
tion used in this report. Calculation of the gravitational force and potential can
also be done more accurately. Furthermore, using the volume centre instead of
the geometrical centre might improve accuracy as well.

The following two items are possible ways to continue the research. Some
parts of these items were initially subjects of study for this report. Due to the
time it took to make the model work like it does now, and the limited scope
of the small research project, these subjects were not addressed. However, this
might be continued by another student as subject of their small research project.
The extended layout of this report was chosen to serve as a guide to quickly get
acquainted to the model.

e By conservation of angular momentum, it is certain that rotation of matter
plays an important role when a slowly rotating cloud collapses into a fast
spinning core. Most likely, the dense core will be surrounded by a disc-like
mass density distribution, from which other gravitational collapses might
be triggered. This might, to some extent, be possible to simulate in a 2-
dimensional axi-symmetric model, but 3-D is necessary when the spinning
core is to be studied in any detail.

e The evolution of a collapsed core {e.g. a proto-stellar object) is closely re-
lated to all microscopic interactions of gas particles, not only the collisions
that are assumed in a perfect gas. Simple chemistry changes the compo-
sition and the number density of the cloud. The cloud becomes opaque,
because atoms capture electrons and start absorbing light. Dust particles
may form, which have an even larger effect on the opacity of the cloud.
Radiation from particle interactions gets trapped inside the core and heats
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it up. So chemistry, radiative transfer and cooling are related topics that
must be included in a serious star formation model.
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Appendix A

Derivation of the Euler
equations

In this section, the Euler equations of motion are derived for a self-gravitating,
spherically symmetric cloud of gas. The method is similar to the method in
Eulderink & Mellema [4]. The equations are derived by taking the classical,
non-relativistic limit of a general relativistic formulation of fluid dynamics. The
non-relativistic limit means that it is assumed that at all times at any position
in the model:

e the mass velocity v is assumed to be small compared to the speed of light c.
e the gravitational potential ® is assumed to be weak compared to c2.

e the pressure P is assumed to be low compared to the rest mass energy
density pc?.

In short: [v] € ¢, ® < ¢® and P < pc?. For general relativity, we used the sign
convention that is defined by Misner et al. [10] as (—, +, —). This is the same as
in Foster&Nightingale [5].

A.1 Derivation of the metric tensor

We start with a cartesian coordinate system in special relativity (no gravity).

The space-time coordinates are X* = (ct,z,y, z). The metric tensor 7, is
defined by:
2dr? =1, dX*dX" = *dt* — dz? — dy* — d2? (A1)
10 0 O
0-10 0
= Ny = 00 -1 0 (A.2)
00 0 -1

67
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Summation over pairs of equal indices is implied. Dividing (A.1) by d7? gives:

2o (G) D ()L ()T (9
\dr / \dr ) \dr ) \dr )
_ (j_jf (¢ — [0% + v, +v:?))

= (= ?) (A3)

1 .
V= v =1/v,2 +v,%2 +v,2 (A.4)
v

122

c2

I

A dot above a variable means the time derivative of this variable. v is the
length of the classical velocity vector (v, vy, v, ). In the classical limit v < ¢, so
v 14 $(0?/c?).

Adding gravity changes the geometry of space-time, and therefore the ap-
pearance of the metric tensor. In the classical limit (weak-field limit, ® < ¢?),
the influence of the gravitational field can be written as a first order perturbation
hy. on the special-relativistic metric tensor 7,,:

2000
ho_l0o%o00
v 0020
0002
1+2 0 0 0
0 -1+2 0 0
= g;w:n;w‘f'hm/: 0 0 c? _1+% 0 (A5)
0 0 0 -1+%

This result is equivalent to [4], Equation (11.3).

Because of spherical symmetry, it is convenient to use spherical spatial coor-
dinates (r,8, ¢) instead of cartesian spatial coordinates (x,y, z). In this report,
a generic coordinate £ is used instead of the radial distance coordinate r. It is
required that the transformation ¢ — r = r({) has an inverse transformation
r — £ = £(r). Our new space-time coordinates are given by:

X# = (ct, 1,6, ¢) (A.6)
In terms of these coordinates, the cartesian space-time coordinates are given by:
X" = (ct,rsin (0) cos (¢), r sin () sin (@), r cos () (A7)
The new metric tensor becomes:
o B b %_g) 2 X 2% 0 0
=g | g T TE (A9
0 0 0 —r2sin®(6)

We use 7' as short notation for or(€)/9¢. Lorentz-invariance implies:

Adr? = §,,dX*dX"

20| , . . 29 .
= [1 + 0—2} Adt? —r”? {1 - 0—2} de? — r?d? — r?sin?(9)d¢* (A.9)
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Dividing (A.9) by dr? gives:

2202 2
1 29
= = —, = —2<I>—r’2—2v42+132 (A.10)
1-4& ¢
C
= D= 1/7202 + 12052 + r2sin® (§)vy? (A.11)

0 is the length of the classical velocity vector (v, = r'vg, rvg,rsin(f)vy) in
spherical coordinates. In the classical limit © < c and ® <« ¢, s0 § & —2® + 2
and 4 & 1 — (®/c?) + 1(0%/?).

A.2 Derivation of the equations of motion

From now on the hats on the tensors are dropped, so X*# refers to the space-time
vector in (A.6) and g, refers to the metric tensor in (A.8). Relativity theory
allows mass to be converted into other forms of energy and vice versa. For the
classical limit it is assumed that mass and energy will not convert into each
other, because the energy densities within the model are too low. Because mass
is conserved, the general relativistic version of the mass continuity equation is
true:
0

JH, = % +TH JV =0 (A.12)
This equation states that the covariant derivative (denoted by “’) of the rela-
tivistic mass flux tensor J# is zero. J# is given by:

oXH

JH=p 5 = ypU# (A.13)
Iy is the Christoffel symbol, given by:
Lo (O9xw | Ogxy  Ogrw
b o= gt [ =& X A4
P =39 <aXA T oxy T axx (4.14)

g" is the contravariant metric tensor, opposed to the covariant metric tensor
guv- In matrix notation, g#” is the inverse of g,,. Using the classical limit
& <« 2, it follows that:

-2 0 0 0
0 —-H[1+2] o 0
wy
1
0 0 0 — =
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Now the following relation exists (e.g. see Foster&Nightingale [5], (2.38)):
1 9

¢ — —a Al6

W= =g XY ( 9) ( )

Here, g is the determinant of g,,. Using the classical limit and (A.8) it follows

that:

g=—r'r?sin?(@) = /—g=r%'sin(9) (A.17)
/—g is called the volume term. Combining (A.12) and (A.16) gives the Euler
equation of mass in relativistic form:
oJH 1 13]
\/ goxv
In general relativity, the motion of matter is governed by the energy-momentum-
stress (EMS) tensor TH¥:

(V=9)J"=0 & V=gJ") =0 (A.18)

8X“(

T _ ere,fPaXu XV _ pg = 2 6”’+PU“U” Py
cz 87 87’ c?
=2 kp + ——) URUY — Pgh (A.19)

The EMS tensor describes the energy content of the gas. In relativity theory,
mass and energy are equivalent. The relativistic total energy density e,.; is the
relativistic equivalent of the classical total energy density in (2.9):

erel = pct + % =e,+ eint (A.20)
e, contains both the rest mass energy and the kinetic energy of the gas (although
the last is not so obvious to recognise), while e, is the internal gas energy of
(2.5). One of the central theorems of general relativity is that the covariant
derivative of the EMS tensor is zero:

T, = % DT + TV T =0 &
9 ’
S (VgT) = —y/=gTy, T (A.21)

Again, (A.16) was used. The four equations (v runs from 0 to 3) in (A.21)
have a similar appearance as (A.18). The equation with v = 0 is the Euler
equation of energy in relativistic form. The equations with v = 1,2,3 are the
Euler equations of momentum in relativistic form for the ¢-direction, 8-direction
and ¢-direction.

The Euler equation of energy does contain the rest mass energy. However,
conservation of rest mass (energy) is incorporated in the Euler equation of mass
(Eq. (A.18)). As the rest mass energy overwhelms the other forms of energy
(kinetic and internal), it is necessary to remove its contribution from the Euler
equation of energy by replacing T#° with T+0:

THO —y THO —HO _ ¢ Ji

r p
:”YQ(/H-F 12)U”U0 P — cypU*

r p
Z(vh—l]chrvzm;) Ut — pPg? (A.22)
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Subtraction of ¢ times (A.18) from (A.21) with v = 0 gives the new Euler
equation of energy:

9
axr V9 [T —elt]) = —/=gT, T =
o ~
S (,/——gTﬂo) — —/=gT0 T (A.23)

Note that the EMS tensor on the right of the equation has no tilde. The Fuler
equations of momentum keep the same form.

Because of spherical symmetry and non-rotation of the model used (see
Section 2.2.1), p, P and & do not depend on 6 or ¢ and vy and vy are both zero
(or UF=23 = 0). From (A.13), it follows directly that J*=%% = (. Using (A.18),
the Euler equation of mass becomes:

9 (/—gJ% = 9 (/—aJV =0 <
aXO \v. J J ! aXl \v J ]
ad 0
Fx0 (V=970U°) + 557 (V=970U") =0 &
A A
5 V=970) + 5 (V=g7pue) = 0 (A.24)

In the non-relativistic limit, using v from (A.11) and /—g from (A.17), this
becomes:

% (r*r'p) + % (r*r'pve) =0 (A.25)
This is the classical (non-relativistic) Euler equation of mass.

Determining the Euler equations of energy and momentum in the non-
relativistic limit requires the components of the Christoffel symbol T, EMS
tensor T and modified EMS tensor 7#° in the non-relativistic limit. Using
(A.14), the non-zero components of the Christoffel symbol I'y, in the the non-
relativistic limit are:

1 0% r' 0® r'’2 9@
0 _ 0 _ 10 _ 0 _
Foo_c_38t’ FOI_FIO_C_Qarv F“__c?’ T
1 9% 190® !t
1 _ 1l _ 1 _
Loo = r'c Or’ For _Fm—_c_?’ ot’ i ot
r . r! rsin 2(6)
Mh=-l,  Th=13=0, =00
r! cos (6)

F%3 = Fgl = P F§3 = —sin (¢) cos (9), Fgg = ng = (A.26)

sin (6)

Using (A.19), the non-zero components of the EMS tensor 7#" in the the non-
relativistic limit are:

P
T — pe?, TOL = 710 = peyy, T = pu? + =

P P
T22 T33 — R A2
’ r2 gin 2(6) (4.27)
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Using (A.22), the non-zero components of the modified EMS tensor T#° in the
the non-relativistic limit are:

~ 1 I
TOO = (?7“/211132 — ‘?\ p+ TP_P
\ 2 ] L'—-1

1 D
:%p’r'zvgz—{——ri_l—p@:e—p@ (A.28)
~ 1, . p r P
T10: — W02 Z_q) L -
([27“ Uy c+F—1c Uy
— (L Lp ) Y m e i) (A.29)
= | gPre I —1 P P PRI :

Here, € is the classical total energy density of (2.33):

1 2 2 2
—or 4+ — — + — A.
(& p Yy p/U,,a ( 30)

With these non-relativistic limits known, the Euler equation of energy (Eq.
(A.23)) becomes:

s (V) + g7 (v=oT™)

= —\/—_g [FBOTOO + F81T01 + F(l)on + F(1)1T11} -

2 (r2/,r'/ e — p®]) + 2 (7’27'1 le 4+ P — o®lw,)
at\ L FE1] ) 86\ L ! FElYe)
P ad
=2 | —pL2 oy, 2 A31
rr[pat priveg (A.31)

This is the classical (non-relativistic) Euler equation of energy. Likewise, using
(A.21) with v = 1, the Euler equation of momentum in the £-direction becomes:

0

oo (V=AT) +

5yt (V=9T") = —r*r’ [Lgg T + T, T
H T + DT+ D5, T2 4 T3] =

o, ., o ) P
a (7'27“ pvg) + % <r2r {pwz + TTQ:| w)

2P 7 P p 0P
ISR - 2, L po®
=rr [rr’ o {pw + r’2} " 87’] (A.32)

This is the classical (non-relativistic) Euler equation of momentum in the ¢-
direction. Using (A.21) with v = 2, the Euler equation of momentum in the
#-direction becomes:

0 ‘
oy (V=9T%) = V=g [I5T"] =
% (r'sin ()P) = cos (O)r'P = 88_5 =0 (A.33)

This is a confirmation of the model assumption that P does not depend on 6,
meaning P does not change in the #-direction. Using (A.21) with v = 3, the
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Euler equation of momentum in the ¢-direction becomes:

0 33 oFP

This is a confirmation of the model assumption that P does not depend on ¢
either. It is clear that (A.33) and (A.34) are not really momentum equation like
(A.32) is, but that was to be expected as there is no mass moving in either the
#- or the ¢-direction.

A.3 Alternative Euler equation of energy

Summarizing, the classical (non-relativistic) Euler equations of mass, momen-
tum and energy are given by (A.25), (A.32) and (A.31) respectively:

9 (2
5 (r*r'p) + (r r'pug) = (A.35)
g (r’r' pug) + g (7“27” [pvf + Pj w\
ot or \ L el )
o, (2P " ( o, PY p0®]

=7rr [7—7 PUy +TTZ}_F_T'J (A36)
0 (r*r' [e — p®]) + 9 (r’r' [e+ P — p®] vy)
ot ol

(A.37)

Here, e is given by (A.30).
Now, a simplification of the energy equation is presented. Using the product
rule for differentiation gives:

0 ; 0
e (7“27" p<I>) e ( r p@v[)

_ @% (7*27“',0) + T2T'p%_(f + @2 (ﬁr'ﬂw) + %7 pop— oo (A.38)

4 or

The first and third term on the right cancel due to (A.35). Rewriting the partial
derivative in the fourth term in terms of r gives:

o o
M2 — 2 !
gy (r*r'p®) + 2% (r*r' pdug) = r’r’ [p T + privg (97‘] (A.39)
Adding (A.39) twice to (A.37) gives:
o
i 2,7 —
5 (r*r' [e + p®]) + 37 (r’r' e+ P + p®lvg) = r’r'p— o (A.40)

The first term on the left hand side is the time derivative of the (familiar) sum of
the total energy density e and the potential energy density p®. If ® is assumed
to vary very slowly in time compared to p, P and v,, the right hand side of the
equation can effectively be set to zero. However, during a gravitational collapse,
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this assumption is not likely to hold. Therefore, we look at another possible
equation. Adding (A.39) once to (A.37) gives:
2 (r*r'e) + 9 (r*r' e + Plve) = —r*r'pr'v oe (A.41)
Bt 3t &= Pl oy '
This is the spherical analogy of Shu [15], (2.32). Using (A.41) instead of (A.37)
or (A.40) has several advantages:

o The gravitational force F' = —‘?9% in the right hand side of (A.41) is easy

to calculate in a spherically symmetric system (see Section 2.4.6).

e The gravitational force is also used in the right hand side of (A.36) and
needs only to be calculated once.

e The gravitational potential ¢ itself has disappeared from the energy equa-
tion altogether.

e The time derivative of the gravitational potential has also disappeared
from the energy equation.

A.4 Summary

In the case of a spherically symmetric, non-rotating cloud of ideal gas, the
classical, non-relativistic Euler equations of motion are given by (A.25), (A.32)
and (A.41):

% (r*r'p) + % (r*r'pve) =0 (A.42)

)
O, o5, 2 ) P
gt ') + 5 ( {” i _} )
or P p 0P
= 72y [— - — {pwz + 772} - FE] (A.43)

‘ 0%
% (r*r'e) + % (r’r' e+ Plog) = —TQT"pT"’UgE (A.44)
Here, r = r(£) is the radial distance as a function of a new radial coordinate £,
v =0r/0¢, r" = §*r/0¢* and e is the total energy density of the gas, given by
(A.30):

e = %pr’z’vgz + % (A45)
In the simple case that r = £, the Euler equations reduce to:

9 (2 9 (a2 \_

5 7°P) + 5, (FPpun) =0 (A.46)

a4 0, , 9 5 [2P od

— — = — —p— A4

gy (r’pv,) + o (r* [pv.> + P]) =7 il - (A.4AT)

9 9 (o _ a2 0%

5% (r’e) + o (r?[e + Pluv,) = —r?pu, 5 (A.48)

1 P
z A4
e 2pvr + 1 (A.49)
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Other derivations

B.1 Eigenvalues and eigenvectors of the Jaco-
bian

In this section, the eigenvalues and eigenvectors of the Jacobian of the Fu-
ler equations are derived. The Euler equations are given by (A.42)-(A.44). In
Section A.3 it was shown that the Euler equation of energy is not uniquely de-
termined, because (A.39) can be added (or subtracted) multiple times to (or
from) (A.44). A more general formulation is the case where (A.39) is added K
times to (A.44), where K can be any real number:

9, 5, 9 (2.
5 (r*r'le + Kp®]) + e (r*r'le + P+ Kp®] v)

od od
200 _ !
=rr Kp_@t + (K = pr Vg (B.1)

When using the vector notation of (2.51), the state vector W, flux vector F and
source vector 8 become:

W =2y pf)g =72y pll))[ (B.2)
e+ Kpd Lpru? + £ 4+ Kp®
PV PU¢
F =2 pvi® + L5 =2y pvi® + L5
e+ P + Kp®u, Lor?u® + Foup + K pdug
(B.3)
0
S =r? 2P _ pot (B.4)
Kp%—f + (K — 1)pr’vg%;f

The Jacobian A is given by A = OF/0W. Naming the elements of the
vector W (W1, Wo, W3) and the elements of F (Fy, Fy, F3), it follows that A is a
Jacobian matrix with elements A,, = OF, /dF}, with a,b € {1,2,3}. To calculate

(0]
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this matrix, F needs to be expressed in terms of W:

[/ Wa \
2 —
F = (0 + 1) J3- + (D — ) Ta=fine (B.5)
rWeWs _ p _qy (2022 L g
\I'“ -Di{Gwt tEW:2))
The Jacobian matrix A becomes:
,0 1 0
Ao | @9 se —(T—1) 52 —(—3) 72 (I—1) 7
(F—1)“27‘;V3£—F%Vé —(F—1)<%ﬁ+1{q>>+r$—f F%—f
,0 1 0
— r-3)*%-—-T-1nkz —(T—3)v, (T-1) 5
(Mr=2)1r?v TKO—E7 Yo, —(T43)3rPul’+ KO+ 5 2 T,
(B.6)
The eigenvalues A, of A are found by solving the characteristic equation:
det(A—-A,)=0 =
rP rpr
/\a3 + 371[)\@2 + (7"2p — 311[2) Ao+ (Uﬁ — ’I"Qp) vw=0 =
)\1 = Vy
1 |TP ¢
/\221)1-1——, —Z'Ug-}-—f
r p r
1 /TP
Ag=vg— =) —— =v— = (B.7)
T p r

Here, det() is the determinant and T is the identity matrix. In the last step the
sound speed ¢, (2.10) was used. Note that both K and ® do not appear in the
eigenvalues. The eigenvectors e, are found by solving:

(A-XJ)e,=0 =

1 1
e = Uy = /\1
ir?u? + K& v + K&
1
1 /rp 1
ey = Vet = A2
e+ P !
%T"2W2+FF1£+K@+T"W TP - + K + r'upcs
-1p V o»
1
1 /rp 1
e3 = Ve — e T et /\3
etP ot
%r'zvez + —FI:1§ + K& —r'vgy/ % p T K® —r'vecs

(B.8)
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In this report K = 0 is used, so the eigenvectors reduce to:

1 1 1
€; = A1 ) €y = )‘2 ] €3 = A3
Sr'2y,? % + 7'vpcs % — rlugc,
(B.9)
In the special case that £ = r, the results become:
Al = Uy, Ao = v, + Cg, A3 = v, —Cg (B.10)
[ 1) [ 1\ [ 1)
e = l Al ’ 5 ey = ( AQ , 5 €3 = ( /\3 (Bll)
1,.2 e+P , .. . e+ P FU
\gVr / \7p Tt/ \"p T Uts/

B.2 Stationary solutions to the Euler equations

In this section, stationary solutions are derived for the Euler equations of motion
in Section A.4. Stationary solutions represent physical configurations in which
all macroscopic gas parameters are constant in time. As a result, all (partial)
time derivatives of the macroscopic gas parameters are zero. Applying this to
(A.42), (A.43) and (A.44) gives:

(r2r'pvz) -0 (B.12)
P 2P P p 00
2 2 _ .2 2L 2
<’f’ 7“/ l:pv[ + _r/2:|> =r r’ |:r7-l _ F {p'UZ + 7_,2 } - 77 87‘:, (B13)

0 0 1 I'P
o (7°r' [e+ P+ p@lug) = = (’“27“/ {5’”’2”22 1t pq’} ”‘) ="
(B.14)

gl gl

From (B.12) it follows that r%r'pvy, = constant = D for all £. This means that
the mass flux pv, = pr've through any spherical shell surface area 4rr? ~ r? is

conserved. From dividing (B.14) by (B.12) it follows that $r'?v,% + %% +& =
constant = B for all £. By definition of the enthalpy H = # with e the
total energy density from (A.45), it follows that H + & is a conserved quantity.

Expanding the left side of (B.13) gives:

3] P 0 o (r’P
EYi (7"27“/ {Pvlz + TTQ]) = ((r*r' pue) ve) + EY; < r’ )

vy r2r"P 2 9P
— 2 77t _ -
_rrp@gag—f—ZrP 5 +r’ 57
o (1 r2r'"P  r?2 9P
=r¥r'p=— | v )+ 2P — —— + ——— B.1
e <2w>+ T o +r’ 57 (B.15)

In the second step (B.12) is used. Expanding the right side of (B.13) gives:

2P 7 P p 0P
9 0 |48 T 2, | _po?
nr [rr’ r! {pw + r’2} r! 87‘}

=2rP — 1" pup? — —— - — (B.16)
r
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Equalizing (B.15) and (B.16) gives:

o (1 r2 OP r2p O®
2.0, T2 Loz 2. .1 2 _ =
Mpa£<2”‘>+r' or ~ T T e

2 1’2 24 +18_P—0 = 2 _LB +18_P—
ae \2" v p ol g\ T—-1p) pot "~
0

(In{p") —In(P)) =0

78

0

(B.17)

In the third step the conservation of B is used. From (B.17) it follows that
P/p" = constant = & for all £. This result is equal to (2.2), which shows that

stationary solutions conserve entropy and shocks are absent.
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